
i

Computer Vision Pipeline for Robotic Arm Control

By

 Aniekan Umanah (U1873416)

A dissertation presented to the School of Computing and Engineering

University of Huddersfield, UK.

In partial fulfilment of the requirements for the Final Year Project Module (NHP2400)

Academic Year: 2020/2021

By submitting this work I confirm that it is entirely by own and adheres to all the academic
integrity guidelines set out by the University.

ii

Abstract

Pick and place tasks are frequently performed by robotic arms. However, the position of the
workpieces may change during the process, necessitating the robot locating such an item before
planning a trajectory. This paper focuses on the use of computer vision techniques to solve robotic
arm orientation of workpiece by developing an image processing pipeline that will enable detection
of a set of items and estimation of their positions using a camera coordinating system and a powerful
computer vision library. Building on recent trends in the use of neural networks, machine learning,
and deep learning, as well as image processing successes, an application was created in MATLAB using
a pretrained network, with the goal of transferring learning to a real robot. To train a robotic arm, this
method employs 3D simulation.

iii

Acknowledgements

This work was supported by my supervisors, Dr Naeem Main and Nemwel Ariaga (Researcher)

iv

Table of Contents

Abstract .. ii

Acknowledgements ... iii

Table of Contents .. iv

List of Tables .. vi

List of Figures ... vii

List of Abbreviations .. viii

1 Introduction .. 1

1.1 Computer Vision ... 2

1.2 Related works ... 3

2 Brief .. 4

2.1 Problem Formulation ... 4

2.2 Problem Solution .. 4

2.3 Overview of Work Plan ... 4

3 Detection .. 5

3.1 Object Detection .. 5

3.1.1 Estimating Anchor Boxes .. 6

3.1.2 Dataset ... 6

3.1.3 Implementation .. 6

3.2 Semantic segmentation .. 7

3.2.1 Balancing Classes .. 8

3.2.2 Dataset ... 8

3.2.3 Implementation .. 8

4 Stereo Vision ... 9

4.1 Pose Estimation .. 9

4.1.1 Calibration .. 10

4.2 Depth .. 10

4.3 Stereo Matching ... 11

4.3.1 Feature-based matching ... 11

4.3.2 Disparity map ... 13

5 Experimental Results ... 15

5.1 Object detection and semantic segmentation ... 15

5.1.1 Object detection ... 15

v

5.1.2 Semantic segmentation .. 16

5.1.3 Evaluation ... 18

5.2 Camera calibration ... 19

5.3 Depth Estimation .. 20

5.3.1 Feature-based matching ... 20

5.3.2 Depth from the disparity map .. 21

5.4 Task Execution .. 22

6 Discussion ... 24

7 Conclusion .. 25

8 References .. 26

9 Appendix A ... 28

10 Appendix B .. 32

11 Appendix C .. 33

vi

List of Tables

Table 1 Overview of detection methods .. 5
Table 2 Effects of median frequency balancing ... 8
Table 3 Precision and Miss rate for different thresholds ... 16
Table 4 Dataset Metrics ... 17
Table 5 Per-class metrics .. 17

vii

List of Figures

Figure 1 An overview of the proposed pipeline ... 4
Figure 2 Network Architecture of the yolov2ObjectDetector .. 6
Figure 3 DeepLab v3+ Encoder-Decoder Architecture [21] .. 7
Figure 4 Class distribution of pixels .. 8
Figure 5 Stereo geometry (Parallel optical axis)[] .. 10
Figure 6 Data flow diagram of the position estimation algorithm ... 12
Figure 7 Depth from disparity map algorithm .. 14
Figure 8 Object detection and segmentation results ... 15
Figure 9 Average precision and Miss rate .. 16
Figure 10 Normalised confusion matrix heatmap .. 18
Figure 11 Histogram of per-image intersection over union (IoU) .. 18
Figure 12 Extrinsic Parameters ... 19
Figure 13 Reprojection Errors .. 20
Figure 14 Correctly detected workpiece .. 21
Figure 15 Corresponding matches found ... 21
Figure 16 Comparison of real and estimated values as well as regression analysis of Algorithm 1 22
Figure 17 Detected object from stream; left and right images .. 23
Figure 18 Visualisation of simulation ... 23
Figure 19 Task execution with workpiece at different positions .. 23

viii

List of Abbreviations

Abbreviation Description
CNN/CovNet(s) Convolutional Neural Network(s)
YOLO You only look once
SSD Single shot detector
ACF Aggregate channel feature
VGG Visual geometry group
R-CNN Regions with convolutional neural network
ResNet Residual Neural Network
IoU Intersection over union
ROI Region of interest
NMS Nonmaximum suppression
COP Centre of projection
FCN Fully convolutional network
RMSE Root mean square error
DAG Direct acyclic graph
fppi False positives per image
DCNN Deep convolutional neural network
DOF Degrees of freedom

 1

1 Introduction

Robots are being increasingly used in different environments which require object manipulation and
task execution [1,12], including smart manufacturing, household settings, warehouse logistics, etc
[12]. These robots perform complex tasks autonomously and require a reliable perception of the
environment and real-time visual feedback. This information is gathered with the aid of various
cameras, sensors, and sensing modalities. Under certain situations, finer recognition might be
required, such as determining whether a specific object is present in the scene such as our case. An
even more precise scene perception, including object detection and pixel-wise semantic
segmentation, is required for more intelligent interaction, such as grasping [1,2,8,12] and
manipulating real-world objects.

Manipulators (robotic arms) have been in industrial use for decades [7], newer generation of
autonomous robots built to sense and respond to their environment, plan their actions and also work
alongside humans and perform human activities. The field of robotic arm control has traditionally
been approached by hand-crafting modular [7] designs employing computer vision techniques with
image processing [8]. The success of deep learning in recent years has spurred the development of
many domains that enable end-to-end learning from examples without the need for handcrafted
features or complicated priors. Despite these advancements, the technology has yet to be fully
integrated into real-time robotic systems, most models only detect stationary workpieces and are not
used to control the robot itself [7,12,22]. In this paper, the study of integrating computer vision for
robotic arm manipulation and task execution is demonstrated. Firstly, the application of computer
vision and deep learning to the task of object perception for pick and place action on a production line
is demonstrated and developed into a pipeline. The problem setting; although the environment is
structured and uncluttered (belt, workpiece), the positions of the workpiece may change during the
process, requiring the robot to pinpoint/estimate the position of the items and plan a trajectory to
execute the pick and place action (bin dropping). The pipeline is adaptable to manipulators, which
need to detect workpieces, such as in this design.

In contrast to their remarkable success, [8] deep learning methods are difficult and have some
limitations. Because of the high dimensionality of the state space, it is very often impractical to
generate sufficient training data with real-world experiments. An alternative method is using
simulation to train the controller – which is employed in this study. It, therefore, means they have a
high degree of complexity and require large amounts of labelled training data to learn the features
needed to solve the task and could take weeks to train, making it virtually impossible to train a network
model from scratch. To reduce the computation time, we employ a transfer learning approach
[2,8,12,13,19,23], in which we take a CovNet pre-trained on a much larger dataset, normally
ImageNet, and use it as a feature extractor in the network's initial layers. The first layers extract
general, low-level features that are applicable across images — such as edges, corners, patterns, and
gradients — and then fine-tune the latter layers to identify specific features within an image for the
high-level task of detection and segmentation. With only a small amount of additional training data,
we can harness the power of deep neural networks for robotic applications using this method.

The robot must first see the objects in order to detect them. Stereo vision is used to accomplish this
by employing two cameras with parallel image planes – Stereo Vision.

 2

1.1 Computer Vision

Computer vision is widely used in a variety of industries and has been incorporated into a variety of
devices. In today's world, we can find common vision algorithms implemented in a variety of contexts,
including game consoles (Xbox Kinect, PS camera), security and surveillance cameras, medical imaging,
and so on. Computer vision operates in a hierarchical manner, identifying features of objects in a series
of applications linked together in a pipeline [9]. Approaches for self-supervision have been developed,
as have others that use the discriminant graph model [4]. Computer vision has been critical in the field
of robotics, improving control by removing uncertainties; and using passive sensors to allow the robot
to observe its surroundings. AI improves the manufacturing process by detecting defects that are not
easily visible to the naked eye; this defect detection rate can reach 90 percent [9]. These methods are
used in the financial sector to detect counterfeit bills and prevent fraud. Computer vision is also
extremely useful in the medical field. With the current COVID-19 pandemic, we see that autonomous
robots are being used to conduct dangerous tests, protecting researchers from harmful diseases, and
providing vital information for vaccine production. Appendix A contains additional examples of the
advantages of computer vision. The majority of computer vision solutions are handcrafted modules
that include scene segmentation, object recognition, 3D reconstruction, pose estimation, trajectory
planning, and so on. This approach, however, may result in information loss between modules,
resulting in error accumulation, and. Moreover, due to the requirement for prior knowledge, it is not
flexible for learning a variety of tasks [8].

Computer vision has been made more effective with the introduction of machine learning (ML) and
the use of deep neural networks, and [2] this has promoted the research of learning-based robotic
grasping. A neural network is made up of a series of interconnected nodes. A node is modelled after
a neuron in the human brain. Nodes, like neurons, activate once sufficient stimuli are present (input).
This activation propagates throughout the network, resulting in a response to the stimuli (output), see
Figure 1(b). The networks are usually represented as DAG. Because of their built-in ability to
extrapolate new features from the set of features in the training set, deep learning networks reduce
the need for explicit, time-consuming feature engineering techniques. They are widely used for
difficult problems that require real-time analysis and scale well to classification tasks that frequently
require complex computations [9]. Convolutional Neural Networks are excellent examples of deep
learning techniques devoted to image processing. However, the performance of deep learning is more
dependent on the quality of the datasets than other conventional machine learning methods. The
training data set must be large enough to prevent overfitting, which entails a significant amount of
manual labour to gather and annotate images. Furthermore, the dataset must cover all conditions,
such as inconsistent lighting, shadow, and occlusion to improve robustness [22].

Thus, investigations into traditional pattern recognition pipelines are valuable and could provide a
complementary approach to the supervised deep learning method, especially for applications with
limited computational capacity as well as available datasets, such as ours. Specific research objectives
were to:

1. Create an object perception model using computer vision and deep neural networks to detect
workpieces on a conveyor belt.

2. Using stereo vision, calibrate cameras to obtain intrinsic and extrinsic parameters; use these
parameters to rectify the stereo system and estimate depth.

 3

3. Combine steps one and two to create a pipeline for robotic arm control, workpiece position
estimation, and task execution.

4. Assess the proposed pipeline's performance at various stages, such as detection, depth estimation,
and task execution.

1.2 Related works

Recent works on robotic manipulation have taken advantage of deep learning. Deep learning can be
introduced into robot manipulation in several ways. James et al. [8] introduce an intermediate reward
policy learning using deep Q-learning to encourage efficient learning. It uses an elipson-greedy
approach which decides between a random action or the action corresponding to the highest Q-value
produced by the DQN. They use positional information to give the agent an intermediate reward based
on the exponentially decaying distance from the gripper to the workpiece with an additional reward
when the item is grasped, and then a final reward based on the height of the lift. From the simulation
results, it was observed that the robotic arm returned to grasp the workpiece if it dropped during the
lifting process. While this task is highly impressive, it required some amount of human involvement
when implemented in the real world. [2,4] Many other researchers have attempted to use computer
vision techniques to solve robot manipulation problems. The methods applied take in an image or
point cloud as input. Schwarz et al. [12] developed a deep learning approach which that allows for
robotic manipulation in a cluttered scene. The output from the CNN-based network is a segmented
image and object bounding box. They combine the posteriors of the detection and segmentation to
produce more accurate pixel-wise object recognition location results. They also develop a depth fusion
method that fuses three separate sources of depth improves the overall depth measurement enabling
a more accurate grasp pose. In the study of [2], the authors propose a novel occlusion-aware CNN
object detection in a cluttered scene which outputs occlusion prediction that convert occluded objects
as background. They also apply an automatic switching function using the Kalman filter for multiple
vision fusion. This improves the accuracy of the pose estimation. Mavrakis et al. [1] explore methods
in which a robot can identify an object using inertial parameters. This suggests that the robot is able
to estimate the mass, CoM and inertia tensors and using some synthesis algorithm to minimise the
collision force by selecting different grasp points on an object. Currently, these methods face some
drawbacks, but with further advancements in machine learning, the methods stated in this study no
doubt would make robot manipulation smarter and more efficient. Other computer vision, ML, and
DL implementations in robotic such as in the study of Gai et al [22]. They developed a vision system
that detects crop plants based for weed control which fuses colour and depth images and performs
feature-based extraction for classifying the crop plants and weed. Researchers in [5] developed a
machine learning technique to detect shaft defects in rotating machinery. The technique can be used
to diagnose faults of other rotating machines such as motors and engines. [4] Proposes a detection
method of determining the clusters of points based on a combination of modelled graphics processing
with fuzzy logic.

The remainder of the paper is organised as follows. The proposed pipeline's overall framework is
introduced (section 2). Investigate the methods for detecting the workpiece (section 3). We describe
the proposed depth and position estimation methods in (section 4). The experiment results are
evaluated and discussed (section 5). (section 6). The paper is finalised (section 7).

 4

2 Brief

2.1 Problem Formulation

The task at hand was clear. A folder containing the relevant data – Extracted from a 3D simulation
software - to be used to experiment was provided. The project suggested the use of Python, but any
suitable programming language could be used; the idea was to get the job done. To create an
application that could estimate the position of the workpiece for pick and place using computer vision
and deep learning and test. The data gathered for these tests would be used control an articulated
robotic arm to sort the detected items into their respective bins.

The programming language needed to integrate all the tasks; to be simple to use and program. This
was important because when developing complex systems low-level programming makes the task
difficult and time consuming.

2.2 Problem Solution

MATLAB was considered to be a suitable programming language and was found to fulfil the necessary
requirements. MATLAB has a very friendly user interface and graphical programming environment; it
has many apps and toolboxes which were very useful to this project. It was possible to accomplish all
the work packages and develop a single application.

2.3 Overview of Work Plan

The idea was for a manipulator to accurately estimate workpieces’ position on a conveyor belt. The
overall pipeline is illustrated in Figure 1. There are mainly four stages which include Object detection,
semantic segmentation, camera calibration, depth Estimation, and position estimation for pick and
place. When the images from the left and right camera are seen (see Figure 1(d)), the items are
detected through object detection and semantic segmentation to produce pixel-wise recognition(see
Figure 1(b)). An algorithm was developed to calculate the disparity using feature matching (see Figure
1(e))to get an average disparity to calculate the depth (z) value as well as the x and y positions. The
features within the bounding box area from the detection are extracted from the left and right
corresponding images and matched.

Figure 1 An overview of the proposed pipeline

 5

3 Detection

Similar to [12], two independent methods are explored which can allow the robot to identify items
around its vicinity. The first method is object detection; uses bounding boxes to highlight instances of
objects in the image from each class for each detection. The second one is semantic segmentation;
obtains pixel-level segmentation – category labelling - of the image. Table 1 summarizes each method.

The two methods use transfer learning which leverages on CNNs pre-trained networks (usually trained
by an expert). There are 99 images available for training which is not a sufficient dataset size to train
a CNN from scratch. The CovNets have been trained on a large classification dataset and are merely
modify the final layers to work in the specific domain.

Table 1 Overview of detection methods

Method Description Pros/Cons Estimated
Parameters

Object
Detection

Classifies the patches of an
image into different object
classes.

+ Easier to implement
+ Works well with smaller
objects
- Coarse estimate

Bounding box,
object confidence
score

Semantic
segmentation

Classifies the pixels in an
image into their
corresponding classes.

+ Precise localization
- Preparing training dataset
is time-consuming
- Higher chance of
misclassification

Segmented image

3.1 Object Detection

Recent advancements in deep learning-based computer vision models have made the development
of object detection applications easier than ever. Besides significant performance improvements, they
also have the ability to leverage transfer learning to lessen the need for large datasets [14]. This has
seen a shift toward end-to-end solutions [2,8,14]. Several algorithms exist and can be used for object
detection such as Faster R-CNN, YOLO, SSD, ACF, VGG, etc.

YOLO is a single stage object detector and considered to be one of the fastest real-time object
detection algorithms as compared to two stage deep learning detectors [9, 15]. To this end, the
YOLOv2 algorithm [13] was adopted. Figure 2 shows the general network architecture. The network
mainly consists of two subnetworks – A fixed feature extraction network followed by a detection
network. The feature extraction network is a ResNet-50 pre-trained on the ImageNet dataset. The
detector subnetwork is a smaller CNN with 9 layers specific to YOLOv2. The layers after
‘activation_40_relu’ in the ResNet are replaced with the YOLOv2 layers. This feature layer outputs the
feature maps that are downsampled by a factor of 16. This gives a good trade-off between spatial
resolutions and the strength of extracted features. The input of the network is from the images taken
by the stereo cameras. The output is the bounding box of the workpiece and the objectness score.
The YOLO v2 uses anchor boxes to detect the classes of the objects in the image by predicting the IoU,
anchor box offsets, and class probability for each anchor box [13]. The analysed network had a total
of 150 layers.

 6

Figure 2 Network Architecture of the yolov2ObjectDetector

3.1.1 Estimating Anchor Boxes

The network uses Predefined bounding boxes of a certain height and width located in the
yolov2TransformLayer Figure 2. They are used to capture the scale and aspect ratio of the specific
object class(one class in this case), usually selected based on the size of objects in the training data
[16]. The training data for estimation had to be resized to the required input size to account for the
resizing of the training data; this was done using the transform function. 9 anchors were used for this
experiment; this predicts 9 anchor boxes in each grid cell and selects the box with the highest
confidence scores using NMS. An IoU (objectness score) would be predicted for each to give a mean
score, which shows how confident the system is of the chosen class. Bounding boxes are estimated to
be within these areas.

3.1.2 Dataset

Training the detector to spot objects required a labelled dataset. The data set was labelled manually
using the Image Labeler app on MATLAB and exported as the ground truth data. This was a bit time
consuming as each cube in each image has to be assigned a rectangular ROI label. The ground truth
data was then used to create the training data. The training dataset was split into three parts; 75% for
training, 10% for validation, and the rest for testing the trained detector. The dataset had to undergo
pre-processing and was resized to an input size of [256 256 3]. Data augmentation was applied to the
training data to help improve network accuracy by adding variation to the data. This is not applied to
the validation and test data to avoid biased evaluation.

3.1.3 Implementation

To train the network, a checkpoint path was set in case the was any power outage or system failure
which could interrupt the training. The network used a stochastic gradient descent with momentum
(sgdm). The initial learning rate was set 10!" to slow down the learning in the transferred layers,
validation data was set to the pre-processed validation data, and max epoch at 50. The validation
frequency was set to 5. The mini-batch size was set at 2 observations at each iteration to divide the
training data evenly (total = 74 observations). This would give a total of 1850 iteration. Data shuffling
was set ‘every epoch’ to avoid discarding the same data every if the batch size didn’t divide evenly.
The Execution environment was set to ‘auto’ and verbose was true. The network was also set to plot
the training progress.

 7

3.2 Semantic segmentation

Real-world object manipulation requires precise object localization. Henceforth, an approach
involving pixel-level segmentation in relation to robot arm manipulation is studied.

Semantic segmentation is one of the fundamental domains of computer vision, which operates by
assigning category labels to each pixel in an image. Current state-of-the-art methods mainly rely on
fully convolutional neural network architectures, that are trained by optimizing a per-pixel loss
between predictions and ground truth labels [18]. Unlike object detection, this method offers a much
more detailed representation of the object. Several networks which can be used for semantic
segmentation include DeepLab, FCNs such as SegNet and U-Net [19]. From the different learning
architectures proposed, [20] the DeepLab model by Google has stood out to give the most accurate
results. To this end, the Deeplab v3+ CNN was adopted. Figure 3 shows the general architecture of the
model adopted.

The model consists of a DeepLab v3+ network with weights initialised from a pre-trained ResNet-50
network. The DeepLab model is generally composed of two phases: the encoding phase which extracts
the essential information from the images using a pretrained network and the decoding phase which
uses the extracted information to reconstruct the output using appropriate dimensions [20]. The
output is a segmented image. The final convolutional layer is adjusted for each task to reflect classes
present in the dataset. The analysed network had a total of 206 layers.

Figure 3 DeepLab v3+ Encoder-Decoder Architecture [21]

The Deeplab v3+ model shown in the figure above is similar to ours. The DeepLab v3+ replaces all max
pooling operations with depthwise separable convolutions with striding, adds extra batch
normalisation and ReLU activations after 3 x 3 depthwise convolutions, and increases the depth
without changing the network structure's entry flow. The encoder has a 16-bit output stride (the ratio
of the original image size to the size of the final encoded features). To reduce the number of channels,
1 x 1 convolutions are applied to the low-level features prior to concatenation. Following that, a few

 8

3 x 3 convolutions are used, and the features are upsampled by a factor of four to produce an output
that is the same size as the input image.

3.2.1 Balancing Classes

The pixels were divided into three different subsets, and the dataset was analysed to view the
distribution of class labels. From this analysis of Figure 4, an imbalance was observed. The scenes have
more belt pixels than cube and background because the belt covers more area in the images. This
imbalance would bias the learning process to favour the dominant class and would classify every pixel
as “belt”. To prevent this and improve the training results, the class weights are used to balance the
classes using median frequency balancing [19], specifying it using the pixelClassificationLayer and
replacing the last layer in the network with this layer.

Figure 4 Class distribution of pixels

Table 2 Effects of median frequency balancing

Classes Frequency Class weights Balanced frequency
Belt 0.825 0.187721746036106 0.155

Cube 0.025 5.92833247855132 0.148
Background 0.15 1.00000000000000 0.15

3.2.2 Dataset

Training the network to classify every pixel in the images required pixel labelled data. As in object
detection, similar methods were used with the only difference being the label type. This method was
exceptionally time-consuming as the whole image had to be assigned pixel ROI labels.

3.2.3 Implementation

The network is finetuned using sgdm. We follow [19] and set the learning rate to 10!", use
L2regularization of 0.0005 to prevent the validation data from overfitting with the training data, a
verbose frequency of 2, and shuffle every-epoch. However, the validation frequency is set to 10
iterations, and validation data specified to the pre-processed validation data. The maximum number
of epochs is reduced to 30 since the dataset is small and a larger epoch gives a larger iteration which
increases training time. The mini batch size is set at 2 to divide data evenly. This would give a total of
1110 iterations. The network environment was set to auto and the training progress was plotted.

 9

4 Stereo Vision

A stereo camera configuration is used in this investigation. The two cameras are focused on the line
of sight; this is where a sensor on the belt detects the workpieces’ and halts the movement. The
cameras then estimate the position of the workpiece and the manipulator then plans a trajectory to
perform the pick and place action. This is very important as stereo geometry recovers the shape from
the motion between the two different views and gets a sense of depth (see 4.2).

The model is a simple stereo system (coplanar image planes). The cameras are initially calibrated to
obtain the extrinsic and intrinsic parameters. The depth is estimated using two independent methods:
estimating depth via stereo matching with developed algorithm summarized in 4.3.1. Estimating depth
from computing a disparity map.

4.1 Pose Estimation

Two vertically aligned cameras, Figure 5 separated by baseline 𝐵, and have a focal length 𝑓, observing
a scene point O (X, Y, Z) in the image plane would observe in the same optic axes vertically, henceforth
the x coordinates can be used to calculate the disparity [17]. To achieve this the cameras are calibrated
to fix the lens distortion between the two cameras and rectify the system afterwards. Anil [11] states
that all measurements hold error and articulates that these values cannot be recognized without the
true values of the quantities being measured; describes calibration in itself as an evaluation method
of determining and documenting how much of the equipment is in error with the actual value.

 The calibration and rectification algorithm uses a known object (120 image pairs of a checkerboard)
of size [1000 by 1000]mm with [8 by 8] 125mm squares. The points of the board are detected, and 3D
world coordinate points are generated. The image points are also computed. Consider a
transformation from w to c, the extrinsic parameters which describe the relative pose in 3D space
expressed as,

𝒄→
𝑷
= 𝑹𝒘𝒄 	 ∙ 	𝒘→

𝑷
	+ 𝒕𝒘𝒄 , Equation 1

where 𝑤→
"

 is the points in the world frame and 𝑐→
"

 is the points in the camera frame; both [4x1]

vectors corresponding to the [x ,y, z,] coordinates. The [3x3] rotation matrix 𝑅!" is the rotation
from world to camera frame and the [3x1] translation vector is the translation from world to
the camera frame. The intrinsic parameters which describe the relative pose in the 2D image
plane expressed as,

 𝑷′///⃗ = 𝑲	 ∙ 		𝒄→
𝑷

, Equation 2

where 𝑃′&&&⃗ is the [3x1] homogeneous pixels vector in the image plane. The [3x3] intrinsic matrix
𝑲. The homogeneous coordinates of both parameters expressed as,

𝒄→
𝑷
= #

𝑹𝟑×𝟑𝒘
𝒄 𝒕𝟑×𝟏𝒘

𝒄

𝑶𝟏×𝟑𝑻 𝟏 (∙ *
𝒙
𝒚
𝒛
𝟏

-
𝒘→
𝑷

………		𝑷*1111⃗ = 3
𝒛 ∗ 𝒖
𝒛 ∗ 𝒗
𝒛
8 = *

𝒇 𝒔 𝒄𝒙
𝟎 𝝏𝒇 𝒄𝒚
𝟎 𝟎 𝟏

- ∙ *
𝒙
𝒚
𝒛
𝟏

-
𝒄→
𝑷

, Equation 3

 10

S is the skew between camera points. 𝑐# and 𝑐$ are the offsets (principal points) of u and v.
The separating scaling factor between u and v is 𝜕.

4.1.1 Calibration

The cameras were calibrated to give the extrinsic, intrinsic and lens distortion parameters. The
calibration computed 2 distortion parameters, with no skew and optical centre at the centre. This
gives the camera parameters as well as the estimation errors which state how accurate the results
are. The images were rectified using the parameter to remove the lens distortion. From the
computation, only 37 out of the 120 image pairs were considered to give a low reprojection error.

4.2 Depth

Humans are able to perceive depth from two perfectly aligned eyes which also allow for 3D sight.
Images viewed from one eye is a little different from the other eye; this creates a difference in
perspectives. Viewing objects that are far away doesn’t ascertain the same result. This is because the
human brain automatically processes the differences and enable us to sense depth [17].

Figure 5 Stereo geometry (Parallel optical axis)[]

Stereo vision can be used to estimate depth. The diagram above shows our setup and is summarized
in section 4.1. O is the scene point located at a distance Z from the camera’s centre of projection (ZL
and ZR) and is projected into the left and right cameras. The distance X is positive in the left camera
(CL) and negative in the right camera(CR) X’, points oL and oR in the image plane are the distances xL
and negative xR to the right and left of the optical axes respectively. The diagram contains similar
triangles (CL, O, CR) and (OL , O, OR). Writing the equivalent equations,

𝑩!𝐱𝐑'𝐱𝐋
𝒁!𝒇

= 𝑩
𝒁

, Equation 4

Yields the expression for Z ,

x#

x$

 11

𝒁 = 𝒇 𝑩
𝐱𝐋!𝐱𝐑

, Equation 5

The difference between the left and right amount is the disparity,

(𝐱𝐋 − 𝐱𝐑), Equation 6

The intra-ocular distance or B which is the translation between the optical centres of the two
cameras can be obtained from translation vector 𝑇%	within the perspective projection equation,
which is Eq 1 and Eq 2 combined. Thus giving,

𝑷,////⃗ = 6
𝒖
𝒗
𝟏
: = 𝑷𝒓𝒐𝒋𝒆𝒄𝒕[𝑴,𝒘→

𝑷
], Equation 7

 𝑴 = 𝑲	𝑻𝒕	𝑹𝒐, Equation 8

𝑅& is a [3 x 3] rotational matrix of camera 2 relative to camera 1, Project is a [3 x 4]
projection matrix.

4.3 Stereo Matching

Stereo matching is one of the oldest approaches to 3D measurement and is a simpler setup compared
to other 3D measurement methods[6]. This method compares the intensity values of pixels that lay
on the same epipolar line in blocks of the same size between the two images and select the locations
with minimum match cost. We use stereo matching methods in conjunction with each other to obtain
two independent sets of results. We develop a feature-based extraction algorithm that uses the
corresponding candidate pairs to estimate the depth. From this, we also estimate a disparity range
centred around the object of interest and compute a disparity to be used to estimate the depth.

4.3.1 Feature-based matching

The left and right images are from the individual cameras and the detector made in section 3.1 is used
as the input to the depth calculating algorithm (Algorithm 1). The overall framework is shown in Figure
6 and is outlined in the following steps:

Step 1. Image rectification: This procedure removes the lens distortion between the cameras and
corrects the images. This was done using the stereo camera parameters in 4.1.1.

Step 2. Detect ROI (cube): The detector was used to estimate the position of the cubes in the rectified
images. Because the input size of the detector is smaller than the actual image, the images had to be
resized.

Step 3. Feature-based detection: Detects the local features within ROI of the images which have
unique content, use a descriptor to extract the detected features around the specified region. To
prevent undue loss of information, the bounding boxes were scaled up and the rectified images from
step 1 were used.

Step 4. Matching: Obtain candidate matches between the features and use indices to collect the actual
point location from both images.

 12

Step 5. Calculate depth (Z): (Eq 5) and was used to calculate the distance of the cubes from the
camera’s centre of projection. Likewise, the X and Y positions are calculated using the estimated depth
value.

The algorithm was then tested for accuracy by calculating the RMSE value. Each step is explained
further in the subsequent section.

Figure 6 Data flow diagram of the position estimation algorithm

4.3.1.1 Methodology

1. Image rectification – This uses the translation and rotation vectors from the stereo parameters
to align the image pairs in the y-axis so that each point observed by the cameras are in the
same row in the images from each camera. Because the 2-D stereo correspondence problem
is reduced to a 1-D problem, this process is useful for stereo vision.

2. Detect the cube – The detector uses an input size of [256 256 3], and the rectified images are
[2033 2032 3]. To be able to detect the cubes in the image pairs, the rectified images had to
be resized to the detector input size before the detector is run and outputs the bounding
boxes and mean IoU scores. See Figure 13.

3. Feature-based detection – The images are converted to grayscale for 2D analysis. To achieve
greater accuracy in the detection, a combination of a blob (KAZE), and a corner (BRISK)
detector are used in conjunction with binary (FREAK) and gradient based (KAZE) descriptor.
The KAZE detector function constructs a scale space for the given image using nonlinear
diffusion. The scale space is then used to detect multiscale corner features, similar to SURF
but less noisy. The BRISK detector employs a Binary Robust Invariant Scalable Keypoints
algorithm to detect multiscale corner features. Computing binary descriptors are faster but
not as precise as gradient-based, while blob detections are more computationally intensive
than corner detections [24]. The features are only detected with the regions specified by the
bounding boxes. The bounding boxes obtained from the previous step had to be scaled up to
match the initial size of the rectified images. The reason for only scaling the boxes and using
the rectified image pairs is to minimize the loss of information caused by quantization when
the pixel intensities are divided by the decimal scale.

 13

4. Matching – Determine candidate matches by matching FREAK descriptors first, and then KAZE
descriptors. To obtain as many feature matches as possible, the max ratio was increased to
0.7 for the FREAK. Obtain the candidate matched point; candidate meaning that some points
could be incorrect. That is why two descriptors are used. See Figure 14.

5. Calculate depth (Z) – Using the matched points to calculate the average disparity between the
images using the matches which have a zero gradient (y/ − y0 ≅ 0). This value is then used
to estimate the depth using (Eq 5). The calculated depth value is then used to estimate the X
and Y axis positions. From the disparity calculation, the disparity range is also obtained using
the maximum and minimum disparity found in the image. To estimate the X and Y positions,
the camera coordinate frame was set using the left optical centre as the reference point. The
positions are estimated using the formula,

𝑿 = 𝒁𝒙𝑳
𝒇
,						𝒀 = 𝒁𝒚𝑳

𝒇
, Equation 9

Where xL and yL are the differences between the principal points (u0, v0) and the points on the
line (uL, vL).

4.3.2 Disparity map

A disparity map is one of the outputs of stereo matching and is can be used to estimate depth. The
depth from the disparity map is very important for numerous fields such as virtual reality and in our
case ‘robotics’ [3]. When a disparity map is precise, robot manoeuvrability is improved. Even so,
disparity maps play an important role in three-dimensional (3D) reconstruction from input images in
the real world. When viewing the contrastive perspectives, the disparity map displays critical 3D
information for assigning image pixels to precisely produce the depth of the dissimilar detected
objects when examining the opposing viewpoints.

With all of its benefits, depth estimation from disparity maps is one of the most difficult and intricate
problems. Many studies have been conducted in recent years to address this issue, and significant
progress has been made. [3] suggests an improvement of the disparity refinement stage using
adaptive least square plane fitting. Their method proposes multiple point disparity selections on a
plane to adaptively group similar disparity values, then calculate the distance of each disparity to
ensure they are accurately grouped, and this is understood to improve the accuracy on the plain colour
or low texture regions, repetitious pattern, and depth discontinuity area. Schwarz et al. [12] present
a simple technique for fusing three separate sources of depth information, thereby improving overall
depth measurement accuracy and incorporates this into their training. Such methods would require
GPU to reduce computation time. [6] propose a novel stereo matching method that makes use of
surface normal data derived from the photometric stereo technique.

To compute our disparity map, we use the disparity range obtained in step 5 of the featured-based
matching technique. The range is the difference be maximum and minimum disparities from the
calculated average disparities using the matched points. The disparity map is then computed using
block matching. This method uses the sum of absolute difference (SAD), as the cost function to
estimate the displacement between the pixels in the rectified stereo image pair. Pixels are marked
for unreliability using a uniqueness threshold value of 25. A block size of 11 is set as the width of the
search window. This generates a 2D grayscale image as a disparity map with the same dimensions as
the input images. Each value in this output denotes the displacement between conjugate pixels in a

 14

stereo pair image. The average depth value is calculated by combining this image with the binary
logical mask of the predicted segmentation ground truth and obtaining the mean value. The Proposed
algorithm (Algorithm 2):

Figure 7 Depth from disparity map algorithm

Summary:

The algorithm is fed the input image pairs, the segmentation network, the detector, and the stereo
parameters. It then invokes the position estimation function (Algorithm 1), which computes the
disparity map using the disparity range and rectified images. The network is then used to segment the
left image, and the binary logical mask for the cube is obtained as a result. The mask and the disparity
mask are then combined to give the depth by performing element-wise multiplication and obtaining
the mean value as the depth.

 15

5 Experimental Results

During the course of this research, all data used was gathered from a particular robotic simulation
software; CoppeliaSim. In order to validate the performance of the proposed pipeline, we evaluate
the two detection methods for level of accuracy of recognition of the workpiece, evaluate the error
estimates from the stereo calibration to analyse the accuracy of the pose estimation, evaluate
Algorithm 1 for speed and accuracy for accuracy by comparing our position estimate with the dataset
provided and performing a regression analysis. We also evaluate the depth map computed in section
4.3.2 and evaluate the estimated depth using the disparity map and segmented images. Finally, the
algorithm is put to the test through simulation.

5.1 Object detection and semantic segmentation

The training and prediction of the DCNNs are implemented on an Intel Iris Plus, 2.3GHz Quad-core
Intel Core i5 CPU with 8GB RAM. For evaluation, the pre-processed test datasets were used. Both
datasets contained 16 images. This is a very small test set and highpoints the effectiveness of the
transfer learning approach. Figure 8 depicts a segmentation and object detection result for an example
scene from the dataset.

Figure 8 Object detection and segmentation results

Figure 8 left – right: Input RGB image frame1, predicted segmentation of image2, the binary logical
mask of the segmented image of the workpieces’3, predicted bounding boxes and mIoU of
workpieces’4.

5.1.1 Object detection

Traditional methods using common metrics such as average precision and log average miss rate are
employed. The mean average precision(mAP) provides a single number that incorporates the
detector's capacity to make correct classifications (precision) as well as the detector's ability to find
all relevant objects (recall). This was done using an initial threshold of 0.7; this determines the extent
of overlap of the bounding box around the workpiece given by the YOLOv2 detector over the bounding
box of the same workpiece in the ground truth. [15]The precision/recall (PR) curve Figure 9[left],
highlights how precise a detector is at varying levels of recall. The ideal precision is 1 at all recall levels.
The log average miss rate Figure 9[right] operates opposite to the mAP. Provides a number that
incorporates the detectors’ ability to make wrong classifications (miss rate), and also find irrelevant
objects(fppi). Given an initial threshold value of 0.7.

 16

The detector is evaluated using different threshold values to see how it affects the accuracy of the
detection. Table 3 shows the precision and miss rate using the different threshold values and Figure 9
show the plots.

Table 3 Precision and Miss rate for different thresholds

 Threshold
 0.7 0.75 0.8
mAP 1.00 1.00 0.96
Log average miss rate 0.00 0.00 0.08

Figure 9 Average precision and Miss rate

5.1.2 Semantic segmentation

The segmentation performance was defined by the 'success rate,' which is defined as the percentage
of evaluation images segmented with an intersection over union (IoU) greater than 0.75 (75%) [22],
and accuracy greater than 0.9 (90%). The accuracy represents the percentage of correctly identified
pixels in each image class defined as,

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 = 	 𝐓𝐏'𝐓𝐍
𝐓𝐏'𝐓𝐍'𝐅𝐏'𝐅𝐍

, Equation 10

 17

Where TP are the correctly classified pixels, TN are the pixels correctly classified as false, FP are the
predicted incorrect pixels classified as correct, FN are the labelled pixels in the ground truth incorrectly
classified.

 The IoU is a statical measurement of accuracy that penalises false positives (FP). The IoU for each
class is the proportion of correctly classified pixels to the total number of pixels assigned by the ground
truth and predictor in that class defines as,

𝐈𝐨𝐔 = 	 𝐓𝐏
𝐓𝐏'𝐅𝐏'𝐅𝐍

, Equation 11

The network is run over the pre-processed test dataset using a minibatch size of 4; this returns the
results for the test. The predicted labels from the test set are then compared with the ground truth
labels. This computation process returns various metrics for the entire test set, for individual classes,
and each test image. The dataset metric is first inspected. This metric provides a high-level overview
of the network’s performance.

Table 4 Dataset Metrics

Global accuracy Mean accuracy MeanIoU WeightedIoU MeanBF score
0.99256 0.99660 0.94195 0.98587 0.98511

Table 4: The global accuracy ratio is the proportion of correctly classified pixels, regardless of class, to
the total number of pixels. The mean accuracy is the average accuracy of all classes in all images. The
MeanIoU is the average IoU score of all classes in all images. The average IoU of each class is weighted
by the number of pixels in that class to calculate the weighted IoU. The MeanBF score is the average
BF score of all classes in all images.

The class metric is then inspected to evaluate the classification accuracy. This shows the impact each
class has on the overall performance.

Table 5 Per-class metrics

Classes Accuracy IoU MeanBF score
Belt 0.99111 0.99091 0.99084
Cube 0.99972 0.85212 0.966099
Background 0.99899 0.98282 0.99839

Table 5: Accuracy - The proportion of correctly classified pixels in each class to the total number of
pixels in that class based on ground truth (Eq 10). IoU for each class. The MeanBF score for each class
is the average BF score of that class across all images.

Note: The contour matching score for the F1 boundary (BF) indicates how well the predicted boundary
of each class aligns with the true boundary.

The normalised confusion matrix displayed as a heatmap which shows the percentage count of pixels
belonging to the true class versus the prediction, divide by the total number of pixels predicted.

 18

Figure 10 Normalised confusion matrix heatmap

Inspect the average IoU of all three classes in the images.

Figure 11 Histogram of per-image intersection over union (IoU)

5.1.3 Evaluation

When compared to the semantic segmentation network, the object detector with object detection
algorithm has been shown to have an average precision of 96%, Table 3 and Figure 9. The DeepLab

 19

model was able to classify over 99 percent of the pixels in the image for segmentation. Table 5 shows
that, while the dataset's performance is quite high, the class metrics show that the underrepresented
'cube' class is not as well segmented as the 'background' and 'belt' classes. Figure 9 displays this
statistic. The heatmap shows the cube pixels having the highest percentage of false positives
(0.5775%). Overall, the segmentation algorithm was successful in segmenting pixels in the images (IoU
> 80% & accuracy > 90%).

5.2 Camera calibration

The calibration results in the creation of an object that stores the intrinsic and extrinsic parameters of
the two cameras as well as their geometric relationship. The geometric relation parameters as shown
in Eq 8 as well as the fundamental matrix, the essential matrix etc. The matrix K intrinsic parameters
of the cameras obtained by the calibration,

𝑲 = Q
𝑓7 0 0
0 𝑓8 0
𝑢9 𝑣9 1

T

Where 𝑓7 and 𝑓8 are the focal length of the horizontal and vertical axis in pixel dimensions, 𝑢9 and 𝑣9
are the principal points.

The translation matrix 𝑻𝒕 of camera 2 relative to camera 1,

𝑻𝒕 = [−𝑩 0 0]

Where baseline, B is the intra-ocular distance between the two cameras translating from camera 2 to
camera 1, hence the negative.

The accuracy of the stereo calibration is evaluated using the visualising obvious errors from the camera
extrinsic, the mean reprojection error and examining the estimation errors from the calibration.

Plotting the camera's and calibration pattern's relative positions is a quick way to detect obvious
errors. For example, if the pattern is behind the camera or the camera is behind the pattern, or if the
pattern is too far or too close to the camera.

Figure 12 Extrinsic Parameters

Figure 12, [left] calibration pattern locations in the camera's coordinate system, [right] camera
positions in the pattern's coordinate system.

 20

The mean reprojection error gives a good estimation of just how accurate the estimated parameters
are. This is the average Euclidean distance in pixels between reprojected and detected points across
all image pairs []. The closer the re-projection error is to zero, the more accurate the parameters are.

Figure 13 Reprojection Errors

From the extrinsic parameter visualisation, obvious errors could not be detected as image frames and
camera frames were clustered. The calibration achieved a mean reprojection error of 0.0463 which
was satisfactory. The error number could still be improved by adding more distortion coefficients or
removing more image pairs with higher errors.

The estimation errors represent the degree of uncertainty associated with each estimated parameter.
This function returns the standard error for the estimated stereo parameter. The standard error (in
the same units as the corresponding parameter) that is returned can be used to compute confidence
intervals [25]. Appendix A displays results.

5.3 Depth Estimation

Of the two methods used to estimate the positions of the items, only the feature-based matching
algorithm was able to give desired values.

5.3.1 Feature-based matching

The algorithm was able to estimate the position [x y z] of the workpieces using the matched feature
points. The combined feature detectors were able to detect a fairly large number of points with the
ROI but achieved a match rate of about 35%.

The standard deviation of prediction errors (RMSE) was used to evaluate the performance of depth
and position estimation, as well as the speed of programme execution. Only 99 of the 100 image pairs
allowed the algorithm to estimate the positions of the workpiece. The mistake appeared to have
occurred during the feature detection phase. As the error message pointed out the ROI input, it was
assumed that the detector failed to detect the cube and output its bounding box. The execution of
the function took about 6.174s. Figure 16 show the error comparisons. Some trends were observed

 21

from the compared values; the estimated Y values were greater than the actual Y values, the estimated
depth values were smaller than the actual depth value whilst the x values varied. From the regression
analysis performed, the RMSE was obtained as 0.0079394 metres; equivalent to 7.94 millimetres.

Figure 14 Correctly detected workpiece

Figure 15 Corresponding matches found

5.3.2 Depth from the disparity map

Unfortunately, this method did not perform how it was expected, but probable causes for the poor
performance were identified. Because the disparity range is obtained using the matched points, the
disparity map is computed using the max and min value from the points the disparity, but from Figure
15 it can be observed that the corresponding points found do not cover the whole area of the desired
object. Just like the matching algorithm, the disparity map computed fails to find all corresponding
matches within the range and output a map with few pixels. Because of these missing pixels, the depth
estimation is inaccurate as there not enough pixels to obtain a reasonable mean value. Ways to
improve the disparity would be explored.

 22

Figure 16 Comparison of real and estimated values as well as regression analysis of Algorithm 1

5.4 Task Execution

In order to investigate direct transfer to a real robot, the simulation environment had to be as close
to the real world as much as possible. A 6-DOF NiryoOne robot arm, two camera modules, a conveyor
belt, two spotlights, workpiece cubes, and a bin comprise the simulation setup. To reduce complexity,
the manipulator is stationary, the joint positions for the six joints are determined ahead of time, and
the trajectory to the bin is calculated so that the robot knows where it is without having to necessarily
locate it.

The control and computation of task are done on a single computer equipped with an Intel® Core™ i3
CPU (2.50GHz) with 8GB RAM. The code to perform the pick and place task is run on MATLAB and the
simulation on CoppeliaSim. The software’s are linked using a remote API server. To summarize the
operation, the belt is equipped with a proximity sensor that acts as the line of sight for the robot and
halts the conveyor belt when an item is detected. The streamed images from the stereo cameras are
then processed to detect the item of interest Figure 14 and estimate the position of the item using
the algorithm developed in section 4.3.1, the joint values are then obtained from the estimated
position and the pick and place action is initiated. The manipulator behaved as expected, moving
towards the cube and performing the pick and place action, implying that the transition from
simulation to real-world is possible.

 23

Figure 17 Detected object from stream; left and right images

Figure 18 Visualisation of simulation

Figure 14: A real-world setting for a virtual-reality simulation (a). The proximity sensor flashes,
indicating that an object has been detected and action is required. The robotic arm recognises the
item, estimates its position, and attempts to grasp it (b). The robot arm successfully grasps and lifts
the workpiece before performing the place action (c). After dropping, the arm moves to the next target
and the process is repeated (e).

Figure 19 Task execution with workpiece at different positions

 24

6 Discussion

The accuracy of the segmentation model was about 3% higher than that of the object detector.
However, the segmentation model does not overlap for the cube class as well as the other classes
present in the ground truth data as seen in Table 5. Perhaps using a different weight balancing method
might improve the results. The YOLO detector completed 1850 iterations in about 62 minutes which
seems like a very long time; However, the detector was able to achieve a very low loss of 0.0087 and
RMSE of 0.0932 which were considered acceptable. Initially, the detector was trained using 7 anchor
boxes, but this proved insufficient when applying the position estimation algorithm as the network
could not detect some of the bounding boxes accurately, hence the change to 9 anchor boxes for more
areas of detection. The segmentation network completed 1110 iterations in 84 minutes achieving an
accuracy of 99.3%. On the first attempt, the segmentation model failed to properly segment the
image; this was due to the class weights being unbalanced, so the network classified almost all pixels
as ‘belt’, hence the use of class weights in section 3.2.1. Overall, both models were able to detect the
workpiece accurately.

The featured-based matching approach fared better than the disparity map computation when
estimation the position of the item. The computation time was 6.174s which isn’t too slow but could
be improved. From the profiling results, it was observed that about 59 % of the computation time was
spent on the feature extraction. This was hugely taken up by the KAZE extraction; as noted in 4.3.1.1
gradient-based descriptors are more computationally intensive. It was noted that only 35% of the
detected point were able to find corresponding matches. Though this number seems low, compared
to single detectors the performance was significantly better; Appendix C shows results of single
feature detector matching. More matching could be obtained by adjusting some of the parameters of
the matching function such as the thresholding and ratio, bearing in mind that this could introduce
inaccurate correspondences. At first, the position estimation did not yield plausible results for the x
axis, this was due to the coordinate frame being set in the middle of the two cameras and calculation
being done with the left camera centre as the reference point. This was later corrected, and the new
dataset yielded better results. The algorithm was assumed to have a 99% estimation rate in view that
it was able to estimate the positions in 99 out of the 100 images. The RMSE revealed the error to be
about 7.94mm which is below a centimetre but could be improved upon. Perhaps following the
methods of [12] and combining the posteriors of the segmentation and object detection could yield
greater accuracy.

The task execution was successful but was extremely slow. To complete a single pick and place action
took 3m 41s. Even at that, the code performed accurately. After 100 episodes the manipulator never
once failed to detect the workpiece or drop the item. The robot had also displayed the ability to detect
the item at different positions on the belt as seen in Figure 19. Improvements to the execution time
could be made. Perhaps a parallel execution environment or the use of a GPU could speed up the
process.

This project was initially started on Python, but it was later moved to MATLAB. This was due to the
calibration dataset not being compatible with the software. Attempts will still be made to write this
in the Python programming language. MATLAB, on the other hand, proved to be adequate for the
task. With very little prior knowledge of computer vision and deep learning, this project was
undertaken.

 25

7 Conclusion

In this paper, we proposed a computer vision pipeline that allows for a manipulator to detect
workpieces on a conveyor belt. We explored two independent methods of detecting the items. Both
methods achieve high detection accuracy 96% for the YOLO object detector and 99.11% for the
DeepLab segmentation model. We also explored two way in which the positions of the items in the
image can be estimated. The calibration had a mean reprojection error of 0.0463 pixels.
Unfortunately, only one of the algorithms was able to deliver plausible results. Algorithm 1 was able
to achieve an estimation RMSE of 7.94mm. The robot was able to estimate the various positions of
the workpiece execute that pick and place task without any error. From the results of the experiment,
we can conclude that:

• Computation of disparity maps is still a very challenging field and requires more research
• Object detection and semantic segmentation are effective methods that can be used for

object recognition in computer vision.
• It is possible for a robot to accurately estimate the position of items within an image to

execute a task using computer vision algorithms.

Key achievements include:

• Ability to develop an image processing pipeline.
• Successfully developing a position estimation algorithm.

The framework of the proposed estimation algorithm can be extended to different objects using a
specified detector and stereo calibration parameters.

Related codes to the estimation algorithm are available online at:

https://github.com/aniekanBane/stereo-geometry.

Further investigations into the disparity map computation and the combination of detectors
posteriors would be the future direction for improvements.

 26

8 References

[1] MAVRAKIS, N., & STOLKIN, R. (2020). ESTIMATION AND EXPLOITATION OF OBJECTS ’ INERTIAL PARAMETERS IN

ROBOTIC GRASPING AND MANIPULATION: A SURVEY. ROBOTICS AND AUTONOMOUS SYSTEMS, 124,
103374. (https://doi.org/10.1016/j.robot.2019.103374)

[2] LIU, W., HU, J., & WANG, W. (2020). A NOVEL CAMERA FUSION METHOD BASED ON SWITCHING SCHEME AND

OCCLUSION-AWARE OBJECT DETECTION FOR REAL-TIME ROBOTIC GRASPING. JOURNAL OF INTELLIGENT & ROBOTIC

SYSTEMS, 100(3-4), 791. (https://doi.org/10.1007/s10846-020-01236-7)

[3] HAMZAH, R. A., & IBRAHIM, H. (2020). IMPROVEMENT OF DISPARITY MAP REFINEMENT STAGE USING ADAPTIVE

LEAST SQUARE PLANE FITTING TECHNIQUE. ELECTRONICS LETTERS, 56(18), 918-
920. (https://doi.org/10.1049/el.2020.1067)

[4] WOŹNIAK, M., & POŁAP, D. (2018). OBJECT DETECTION AND RECOGNITION VIA CLUSTERED

FEATURES. NEUROCOMPUTING (AMSTERDAM), 320, 76-84.
(https://doi.org/10.1016/j.neucom.2018.09.003)

[5] LEE, Y. E., KIM, B., BAE, J., & KIM, K. C. (2021). MISALIGNMENT DETECTION OF A ROTATING MACHINE SHAFT

USING A SUPPORT VECTOR MACHINE LEARNING ALGORITHM. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING

AND MANUFACTURING, 22(3), 409-416. (https://doi.org/10.1007/s12541-020-00462-1)

[6] SONG, E., KIM, S., & CHANG, M. (2020). NOVEL STEREO-MATCHING METHOD UTILIZING SURFACE NORMAL

DATA. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 21(8), 1437-
1445. (https://doi.org/10.1007/s12541-020-00350-8)

[7] SZABÓ, R., GONTEAN, A. (2013). FULL 3D ROBOTIC ARM CONTROL WITH STEREO CAMERAS MADE IN LABVIEW.
30TH FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS). PP 37-42.
(https://annals-csis.org/proceedings/2013/pliks/52.pdf)

[8] JAMES, S., JOHNS, E. (2016). 3D SIMULATION FOR ROBOTIC ARM CONTROL WITH DEEP Q-LEARNING. RETRIEVED

FROM: (https://arxiv.org/pdf/1609.03759.pdf)

[9] HOW TO DO DEEP LEARNING WITH SAS®. (2019). RETRIEVED FROM:
(HTTPS://WWW.SAS.COM/CONTENT/DAM/SAS/EN_US/DOC/WHITEPAPER1/DEEP-LEARNING-WITH-SAS-
109610.PDF)

[10] GILEWSKI, J. (2019). MODULAR IMAGE PROCESSING PIPELINE USING OPENCV AND PYTHON GENERATORS.
RETRIEVED FROM: (HTTPS://MEDIUM.COM/DEEPVISIONGURU/MODULAR-IMAGE-PROCESSING-PIPELINE-USING-
OPENCV-AND-PYTHON-GENERATORS-9EDCA3CCB696)

[11] ANIL. (2018). METROLOGY. INTECHOPEN. RETRIEVED FROM:
(https://www.intechopen.com/books/metrology/introductory-chapter-metrology)

[12] SCHWARZ, M., MILAN, A., PERIYASAMY, A. S., & BEHNKE, S. (2018). RGB-D OBJECT DETECTION AND

SEMANTIC SEGMENTATION FOR AUTONOMOUS MANIPULATION IN CLUTTER. THE INTERNATIONAL JOURNAL OF

ROBOTICS RESEARCH, 37(4–5), 437–451. (HTTPS://DOI.ORG/10.1177/0278364917713117)

 27

[13] MATLAB. (2021). OBJECT DETECTION USING YOLOV2 DEEP LEARNING. RETRIEVED FROM:
(HTTPS://UK.MATHWORKS.COM/HELP/VISION/UG/TRAIN-AN-OBJECT-DETECTOR-USING-YOU-ONLY-LOOK-
ONCE.HTML)

[14] HULSTAERT, L. (2018). GOING DEEP INTO OBJECT DETECTION. RETRIEVED FROM:
(HTTPS://TOWARDSDATASCIENCE.COM/GOING-DEEP-INTO-OBJECT-DETECTION-
BED442D92B34?GI=D23176487019)

[15] MATLAB. (2021). GETTING STARTED WITH YOLOV2. RETRIEVED FROM:

[16] MATLAB. (2021). ANCHOR BOXES FOR OBJECT DETECTION. RETRIEVED FROM:

[17] YASIN ESER, A. (2020). THE DEPTH I: STEREO CALIBRATION AND RECTIFICATION. RETRIEVE FROM:
(HTTPS://PYTHON.PLAINENGLISH.IO/THE-DEPTH-I-STEREO-CALIBRATION-AND-RECTIFICATION-24DA7B0FB1E0)

[18] CHEN, Y., DAPOGNY, A., & CORD, M. (2020). SEMEDA: ENHANCING SEGMENTATION PRECISION WITH SEMANTIC

EDGE AWARE LOSS. PATTERN RECOGNITION, 108, 107557. HTTPS://DOI.ORG/10.1016/J.PATCOG.2020.107557

[19] EDDINS, S. (2018) SEMANTIC SEGMENTATION USING DEEP LEARNING.

[20] PAL, S. (2019). SEMANTIC SEGMENTATION: INTRODUCTION TO THE DEEP LEARNING TECHNIQUE BEHIND GOOGLE

PIXEL’S CAMERA! RETRIEVED FROM: (https://www.analyticsvidhya.com/blog/2019/tutorial-
semantic/segmentation-google-deeplab/)

[21] ZHANG, SANXING & MA, ZHENHUAN & ZHANG, GANG & LEI, TAO & ZHANG, RUI & CUI, YI. (2020). SEMANTIC

IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS AND QUICK SHIFT. SYMMETRY. 12. 427.
10.3390/SYM12030427.

[22] GAI, J., TANG, L., & STEWARD, B. L. (2020). AUTOMATED CROP PLANT DETECTION BASED ON THE FUSION OF

COLOUR AND DEPTH IMAGES FOR ROBOTIC WEED CONTROL. JOURNAL OF FIELD ROBOTICS, 37(1), 35-
52. HTTPS://DOI.ORG/10.1002/ROB.21897

[23] CS231N. (2017). CONVOLUTIONAL NEURAL NETWORKS FOR VISUAL RECOGNITION. RETRIEVED FROM:
(https://cs231n.github.io/transfer-learning/)

[24] MATLAB. (2021). EXTRACT FEATURES

[25] MATLAB. (2021). ESTIMATE CAMERA PARAMETERS.

 28

9 Appendix A

 Standard Errors of Estimated Stereo Camera Parameters

Camera 1 Intrinsics

Focal length (pixels): [2472.2443 +/- 0.0928 2472.1777 +/- 0.0901]

Principal point (pixels): [1024.3966 +/- 0.0710 1024.5489 +/- 0.0690]

Radial distortion: [-0.0000 +/- 0.0004 0.0004 +/- 0.0037]

Camera 1 Extrinsics

Rotation vectors:

 [0.0001 +/- 0.0001 0.0000 +/- 0.0001 -1.5708 +/- 0.0000]

 [-0.3140 +/- 0.0001 -0.5167 +/- 0.0001 -2.1199 +/- 0.0000]

 [-0.3172 +/- 0.0001 0.5443 +/- 0.0001 0.5835 +/- 0.0000]

 [0.6128 +/- 0.0000 1.1095 +/- 0.0000 -1.8262 +/- 0.0000]

 [0.4017 +/- 0.0000 0.2447 +/- 0.0001 0.9902 +/- 0.0000]

 [1.0085 +/- 0.0000 0.4322 +/- 0.0000 0.8134 +/- 0.0000]

 [-0.5448 +/- 0.0000 0.9234 +/- 0.0000 0.5623 +/- 0.0000]

 [0.8255 +/- 0.0000 0.1303 +/- 0.0000 1.3405 +/- 0.0000]

 [0.6124 +/- 0.0000 -0.6468 +/- 0.0000 -0.7236 +/- 0.0000]

 [-0.0910 +/- 0.0001 0.3903 +/- 0.0001 -0.2822 +/- 0.0000]

 [0.8653 +/- 0.0000 -1.0396 +/- 0.0000 -1.3536 +/- 0.0000]

 [-0.2564 +/- 0.0001 0.4635 +/- 0.0001 -1.3314 +/- 0.0000]

 [-0.2760 +/- 0.0000 -0.7824 +/- 0.0000 1.4832 +/- 0.0000]

 [0.4836 +/- 0.0000 0.7454 +/- 0.0000 1.4768 +/- 0.0000]

 29

 [-0.8276 +/- 0.0000 -0.1985 +/- 0.0000 1.7759 +/- 0.0000]

 [-0.6369 +/- 0.0000 0.7331 +/- 0.0000 0.1212 +/- 0.0000]

 [0.2159 +/- 0.0001 -0.2757 +/- 0.0001 -0.5463 +/- 0.0000]

 [-0.9410 +/- 0.0000 0.3873 +/- 0.0000 -0.2107 +/- 0.0000]

 [0.2687 +/- 0.0001 0.7851 +/- 0.0001 -2.0487 +/- 0.0000]

 [1.0201 +/- 0.0000 0.6813 +/- 0.0000 2.0400 +/- 0.0000]

 [0.5464 +/- 0.0000 -0.6070 +/- 0.0000 -0.1739 +/- 0.0000]

 [-0.3480 +/- 0.0000 0.8497 +/- 0.0000 -0.8603 +/- 0.0000]

 [0.4921 +/- 0.0000 -0.2071 +/- 0.0001 -0.5308 +/- 0.0000]

 [-0.8539 +/- 0.0000 -1.1109 +/- 0.0000 1.4035 +/- 0.0000]

 [0.4018 +/- 0.0001 -0.5793 +/- 0.0001 -0.4388 +/- 0.0000]

 [-0.2030 +/- 0.0000 -0.6366 +/- 0.0000 -0.3327 +/- 0.0000]

 [0.5114 +/- 0.0001 -0.1617 +/- 0.0001 -2.0048 +/- 0.0000]

 [-0.5604 +/- 0.0000 0.4453 +/- 0.0000 -0.4790 +/- 0.0000]

 [0.6733 +/- 0.0000 -0.8563 +/- 0.0000 1.2704 +/- 0.0000]

 [-0.1704 +/- 0.0001 0.3088 +/- 0.0001 1.4026 +/- 0.0000]

 [0.2732 +/- 0.0001 0.1647 +/- 0.0001 -2.1279 +/- 0.0000]

 [0.0014 +/- 0.0001 -0.2190 +/- 0.0001 0.8556 +/- 0.0000]

 [-0.0177 +/- 0.0001 0.1193 +/- 0.0001 -1.0786 +/- 0.0000]

 [0.2523 +/- 0.0001 -0.2305 +/- 0.0001 1.5546 +/- 0.0000]

 [0.3060 +/- 0.0001 0.6491 +/- 0.0001 -2.0792 +/- 0.0000]

 [0.1844 +/- 0.0001 -0.4658 +/- 0.0001 0.6153 +/- 0.0000]

 [0.8679 +/- 0.0000 -0.7302 +/- 0.0000 -1.3148 +/- 0.0000]

Translation vectors (millimetres):

 [-488.8933 +/- 0.0649 356.1638 +/- 0.0630 2259.2034 +/- 0.1014]

 [-176.6366 +/- 0.0747 557.7898 +/- 0.0723 2582.4908 +/- 0.1272]

 30

 [-106.3028 +/- 0.0908 -357.2386 +/- 0.0886 3163.5157 +/- 0.1110]

 [-15.1019 +/- 0.0728 108.9893 +/- 0.0716 2558.0473 +/- 0.0844]

 [215.9453 +/- 0.0577 -405.0651 +/- 0.0559 1986.9981 +/- 0.0878]

 [-79.4812 +/- 0.0593 -225.1597 +/- 0.0580 2064.5996 +/- 0.0923]

 [-6.1568 +/- 0.0807 -173.0286 +/- 0.0793 2816.0461 +/- 0.0917]

 [205.5509 +/- 0.0568 -493.8714 +/- 0.0563 1970.9892 +/- 0.0947]

 [-234.4591 +/- 0.0724 -126.0314 +/- 0.0706 2496.2956 +/- 0.1180]

 [-337.9269 +/- 0.0774 -225.1057 +/- 0.0746 2698.0052 +/- 0.0965]

 [-93.0807 +/- 0.0731 233.0472 +/- 0.0704 2522.2798 +/- 0.1159]

 [-371.6224 +/- 0.0738 102.7704 +/- 0.0714 2575.8950 +/- 0.0925]

 [362.8619 +/- 0.0654 -318.3349 +/- 0.0637 2293.4399 +/- 0.0854]

 [203.4585 +/- 0.0574 -262.1489 +/- 0.0552 1988.4226 +/- 0.0847]

 [413.4008 +/- 0.0730 -40.5516 +/- 0.0706 2546.0676 +/- 0.0844]

 [-150.9664 +/- 0.0704 -165.1104 +/- 0.0688 2461.2057 +/- 0.0775]

 [-411.2700 +/- 0.0683 -142.4915 +/- 0.0658 2333.6878 +/- 0.1081]

 [-323.9650 +/- 0.0845 19.4339 +/- 0.0823 2943.5988 +/- 0.0990]

 [-114.2614 +/- 0.0769 205.9993 +/- 0.0756 2700.8274 +/- 0.0941]

 [390.8584 +/- 0.0464 12.7366 +/- 0.0452 1610.6573 +/- 0.0812]

 [-230.5125 +/- 0.0483 -261.9150 +/- 0.0473 1667.2606 +/- 0.0826]

 [-202.6438 +/- 0.0985 124.9858 +/- 0.0949 3404.5728 +/- 0.1171]

 [-614.0406 +/- 0.0671 50.4090 +/- 0.0646 2301.8594 +/- 0.1043]

 [77.5874 +/- 0.0894 -197.1773 +/- 0.0864 3096.0320 +/- 0.1066]

 [-500.7292 +/- 0.0750 -252.0236 +/- 0.0723 2565.8401 +/- 0.1219]

 [-314.8590 +/- 0.0530 -110.7994 +/- 0.0511 1827.2515 +/- 0.0796]

 [-113.6923 +/- 0.0650 532.9572 +/- 0.0624 2259.3928 +/- 0.0935]

 [-525.1949 +/- 0.0775 43.6418 +/- 0.0749 2694.4301 +/- 0.0919]

 [472.7202 +/- 0.0481 -363.1211 +/- 0.0482 1681.6073 +/- 0.0804]

 31

 [457.6801 +/- 0.0721 -607.4536 +/- 0.0701 2519.1301 +/- 0.0976]

 [-211.0834 +/- 0.0587 482.2081 +/- 0.0561 2065.2462 +/- 0.0827]

 [12.4805 +/- 0.0611 -498.5069 +/- 0.0594 2114.5059 +/- 0.0934]

 [-640.6864 +/- 0.0708 227.3993 +/- 0.0692 2495.7829 +/- 0.1016]

 [240.1102 +/- 0.0546 -285.4988 +/- 0.0539 1888.7218 +/- 0.0858]

 [-61.9430 +/- 0.0902 461.4501 +/- 0.0875 3151.4026 +/- 0.1140]

 [93.4313 +/- 0.0722 -676.7940 +/- 0.0714 2501.9871 +/- 0.1128]

 [-147.6475 +/- 0.0579 242.4697 +/- 0.0556 1997.7613 +/- 0.0909]

Camera 2 Intrinsics

Focal length (pixels): [2472.2141 +/- 0.0926 2472.1423 +/- 0.0897]

Principal point (pixels):[1024.5042 +/- 0.0732 1024.3854 +/- 0.0689]

Radial distortion: [0.0001 +/- 0.0004 -0.0029 +/- 0.0034]

Position and Orientation of Camera 2 Relative to Camera 1

Rotation of camera 2: [-0.0001 +/- 0.0000 -0.0000 +/- 0.0000 -0.0000 +/- 0.0000]

Translation of camera 2 (millimetres):[-63.5032 +/- 0.0090 -0.0122 +/- 0.0089 -0.0401 +/-
0.0625]

 32

10 Appendix B

[9]

 33

11 Appendix C

Figures showing the different feature detection and extraction methods applied to the detection
algorithm and their corresponding matches.

SURF

KAZE

BRISK

 34

MSER

