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Abstract 

Pick and place tasks are frequently performed by robotic arms. However, the position of the 
workpieces may change during the process, necessitating the robot locating such an item before 
planning a trajectory. This paper focuses on the use of computer vision techniques to solve robotic 
arm orientation of workpiece by developing an image processing pipeline that will enable detection 
of a set of items and estimation of their positions using a camera coordinating system and a powerful 
computer vision library. Building on recent trends in the use of neural networks, machine learning, 
and deep learning, as well as image processing successes, an application was created in MATLAB using 
a pretrained network, with the goal of transferring learning to a real robot. To train a robotic arm, this 
method employs 3D simulation. 
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1 Introduction  

Robots are being increasingly used in different environments which require object manipulation and 
task execution [1,12], including smart manufacturing, household settings, warehouse logistics, etc 
[12]. These robots perform complex tasks autonomously and require a reliable perception of the 
environment and real-time visual feedback. This information is gathered with the aid of various 
cameras, sensors, and sensing modalities. Under certain situations, finer recognition might be 
required, such as determining whether a specific object is present in the scene such as our case. An 
even more precise scene perception, including object detection and pixel-wise semantic 
segmentation, is required for more intelligent interaction, such as grasping [1,2,8,12] and 
manipulating real-world objects. 

Manipulators (robotic arms) have been in industrial use for decades [7], newer generation of 
autonomous robots built to sense and respond to their environment, plan their actions and also work 
alongside humans and perform human activities. The field of robotic arm control has traditionally 
been approached by hand-crafting modular [7] designs employing computer vision techniques with 
image processing [8]. The success of deep learning in recent years has spurred the development of 
many domains that enable end-to-end learning from examples without the need for handcrafted 
features or complicated priors. Despite these advancements, the technology has yet to be fully 
integrated into real-time robotic systems, most models only detect stationary workpieces and are not 
used to control the robot itself [7,12,22]. In this paper, the study of integrating computer vision for 
robotic arm manipulation and task execution is demonstrated. Firstly, the application of computer 
vision and deep learning to the task of object perception for pick and place action on a production line 
is demonstrated and developed into a pipeline. The problem setting; although the environment is 
structured and uncluttered (belt, workpiece), the positions of the workpiece may change during the 
process, requiring the robot to pinpoint/estimate the position of the items and plan a trajectory to 
execute the pick and place action (bin dropping). The pipeline is adaptable to manipulators, which 
need to detect workpieces, such as in this design. 

In contrast to their remarkable success, [8] deep learning methods are difficult and have some 
limitations. Because of the high dimensionality of the state space, it is very often impractical to 
generate sufficient training data with real-world experiments. An alternative method is using 
simulation to train the controller – which is employed in this study. It, therefore, means they have a 
high degree of complexity and require large amounts of labelled training data to learn the features 
needed to solve the task and could take weeks to train, making it virtually impossible to train a network 
model from scratch. To reduce the computation time, we employ a transfer learning approach 
[2,8,12,13,19,23], in which we take a CovNet pre-trained on a much larger dataset, normally 
ImageNet, and use it as a feature extractor in the network's initial layers. The first layers extract 
general, low-level features that are applicable across images — such as edges, corners, patterns, and 
gradients — and then fine-tune the latter layers to identify specific features within an image for the 
high-level task of detection and segmentation. With only a small amount of additional training data, 
we can harness the power of deep neural networks for robotic applications using this method.  

The robot must first see the objects in order to detect them. Stereo vision is used to accomplish this 
by employing two cameras with parallel image planes – Stereo Vision.  
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1.1 Computer Vision 

Computer vision is widely used in a variety of industries and has been incorporated into a variety of 
devices. In today's world, we can find common vision algorithms implemented in a variety of contexts, 
including game consoles (Xbox Kinect, PS camera), security and surveillance cameras, medical imaging, 
and so on. Computer vision operates in a hierarchical manner, identifying features of objects in a series 
of applications linked together in a pipeline [9]. Approaches for self-supervision have been developed, 
as have others that use the discriminant graph model [4]. Computer vision has been critical in the field 
of robotics, improving control by removing uncertainties; and using passive sensors to allow the robot 
to observe its surroundings. AI improves the manufacturing process by detecting defects that are not 
easily visible to the naked eye; this defect detection rate can reach 90 percent [9]. These methods are 
used in the financial sector to detect counterfeit bills and prevent fraud. Computer vision is also 
extremely useful in the medical field. With the current COVID-19 pandemic, we see that autonomous 
robots are being used to conduct dangerous tests, protecting researchers from harmful diseases, and 
providing vital information for vaccine production. Appendix A contains additional examples of the 
advantages of computer vision. The majority of computer vision solutions are handcrafted modules 
that include scene segmentation, object recognition, 3D reconstruction, pose estimation, trajectory 
planning, and so on. This approach, however, may result in information loss between modules, 
resulting in error accumulation, and. Moreover, due to the requirement for prior knowledge, it is not 
flexible for learning a variety of tasks [8]. 

Computer vision has been made more effective with the introduction of machine learning (ML) and 
the use of deep neural networks, and [2] this has promoted the research of learning-based robotic 
grasping. A neural network is made up of a series of interconnected nodes. A node is modelled after 
a neuron in the human brain. Nodes, like neurons, activate once sufficient stimuli are present (input). 
This activation propagates throughout the network, resulting in a response to the stimuli (output), see 
Figure 1(b). The networks are usually represented as DAG. Because of their built-in ability to 
extrapolate new features from the set of features in the training set, deep learning networks reduce 
the need for explicit, time-consuming feature engineering techniques. They are widely used for 
difficult problems that require real-time analysis and scale well to classification tasks that frequently 
require complex computations [9]. Convolutional Neural Networks are excellent examples of deep 
learning techniques devoted to image processing. However, the performance of deep learning is more 
dependent on the quality of the datasets than other conventional machine learning methods. The 
training data set must be large enough to prevent overfitting, which entails a significant amount of 
manual labour to gather and annotate images. Furthermore, the dataset must cover all conditions, 
such as inconsistent lighting, shadow, and occlusion to improve robustness [22]. 

Thus, investigations into traditional pattern recognition pipelines are valuable and could provide a 
complementary approach to the supervised deep learning method, especially for applications with 
limited computational capacity as well as available datasets, such as ours. Specific research objectives 
were to: 

1. Create an object perception model using computer vision and deep neural networks to detect 
workpieces on a conveyor belt. 

2. Using stereo vision, calibrate cameras to obtain intrinsic and extrinsic parameters; use these 
parameters to rectify the stereo system and estimate depth. 
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3. Combine steps one and two to create a pipeline for robotic arm control, workpiece position 
estimation, and task execution. 

4. Assess the proposed pipeline's performance at various stages, such as detection, depth estimation, 
and task execution.  

 

1.2 Related works 

Recent works on robotic manipulation have taken advantage of deep learning. Deep learning can be 
introduced into robot manipulation in several ways. James et al. [8] introduce an intermediate reward 
policy learning using deep Q-learning to encourage efficient learning. It uses an elipson-greedy 
approach which decides between a random action or the action corresponding to the highest Q-value 
produced by the DQN. They use positional information to give the agent an intermediate reward based 
on the exponentially decaying distance from the gripper to the workpiece with an additional reward 
when the item is grasped, and then a final reward based on the height of the lift. From the simulation 
results, it was observed that the robotic arm returned to grasp the workpiece if it dropped during the 
lifting process. While this task is highly impressive, it required some amount of human involvement 
when implemented in the real world. [2,4] Many other researchers have attempted to use computer 
vision techniques to solve robot manipulation problems. The methods applied take in an image or 
point cloud as input. Schwarz et al. [12] developed a deep learning approach which that allows for 
robotic manipulation in a cluttered scene. The output from the CNN-based network is a segmented 
image and object bounding box. They combine the posteriors of the detection and segmentation to 
produce more accurate pixel-wise object recognition location results. They also develop a depth fusion 
method that fuses three separate sources of depth improves the overall depth measurement enabling 
a more accurate grasp pose. In the study of [2], the authors propose a novel occlusion-aware CNN 
object detection in a cluttered scene which outputs occlusion prediction that convert occluded objects 
as background. They also apply an automatic switching function using the Kalman filter for multiple 
vision fusion. This improves the accuracy of the pose estimation. Mavrakis et al. [1] explore methods 
in which a robot can identify an object using inertial parameters. This suggests that the robot is able 
to estimate the mass, CoM and inertia tensors and using some synthesis algorithm to minimise the 
collision force by selecting different grasp points on an object. Currently, these methods face some 
drawbacks, but with further advancements in machine learning, the methods stated in this study no 
doubt would make robot manipulation smarter and more efficient. Other computer vision, ML, and 
DL implementations in robotic such as in the study of Gai et al [22]. They developed a vision system 
that detects crop plants based for weed control which fuses colour and depth images and performs 
feature-based extraction for classifying the crop plants and weed. Researchers in [5] developed a 
machine learning technique to detect shaft defects in rotating machinery. The technique can be used 
to diagnose faults of other rotating machines such as motors and engines. [4] Proposes a detection 
method of determining the clusters of points based on a combination of modelled graphics processing 
with fuzzy logic. 

The remainder of the paper is organised as follows. The proposed pipeline's overall framework is 
introduced (section 2). Investigate the methods for detecting the workpiece (section 3). We describe 
the proposed depth and position estimation methods in (section 4). The experiment results are 
evaluated and discussed (section 5). (section 6). The paper is finalised (section 7). 



 4 

2 Brief 

2.1 Problem Formulation 

The task at hand was clear. A folder containing the relevant data – Extracted from a 3D simulation 
software  - to be used to experiment was provided. The project suggested the use of Python, but any 
suitable programming language could be used; the idea was to get the job done. To create an 
application that could estimate the position of the workpiece for pick and place using computer vision 
and deep learning and test. The data gathered for these tests would be used control an articulated 
robotic arm to sort the detected items into their respective bins. 

The programming language needed to integrate all the tasks; to be simple to use and program. This 
was important because when developing complex systems low-level programming makes the task 
difficult and time consuming. 

2.2 Problem Solution 

MATLAB was considered to be a suitable programming language and was found to fulfil the necessary 
requirements. MATLAB has a very friendly user interface and graphical programming environment; it 
has many apps and toolboxes which were very useful to this project. It was possible to accomplish all 
the work packages and develop a single application. 

2.3 Overview of Work Plan 

The idea was for a manipulator to accurately estimate workpieces’ position on a conveyor belt. The 
overall pipeline is illustrated in Figure 1.  There are mainly  four stages which include Object detection, 
semantic segmentation, camera calibration, depth Estimation, and position estimation for pick and 
place. When the images from the left and right camera are seen (see Figure 1(d)), the items are 
detected through object detection and semantic segmentation to produce pixel-wise recognition(see 
Figure 1(b)). An algorithm was developed to calculate the disparity using feature matching (see Figure 
1(e))to get an average disparity to calculate the depth (z) value as well as the x and y positions. The 
features within the bounding box area from the detection are extracted from the left and right 
corresponding images and matched. 

 

Figure 1 An overview of the proposed pipeline 
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3 Detection 

Similar to [12], two independent methods are explored which can allow the robot to identify items 
around its vicinity. The first method is object detection; uses bounding boxes to highlight instances of 
objects in the image from each class for each detection. The second one is semantic segmentation; 
obtains pixel-level segmentation – category labelling - of the image. Table 1 summarizes each method. 

The two methods use transfer learning which leverages on CNNs pre-trained networks (usually trained 
by an expert). There are 99 images available for training which is not a sufficient dataset size to train 
a CNN from scratch. The CovNets have been trained on a large classification dataset and are merely 
modify the final layers to work in the specific domain. 

Table 1 Overview of detection methods 

Method  Description Pros/Cons Estimated 
Parameters 

Object 
Detection 

Classifies the patches of an 
image into different object 
classes. 

+ Easier to implement 
+ Works well with smaller 
objects 
- Coarse estimate  

Bounding box, 
object confidence 
score 

Semantic 
segmentation 

Classifies the pixels in an 
image into their 
corresponding classes. 

+ Precise localization 
- Preparing training dataset 
is time-consuming 
- Higher chance of 
misclassification 

 

Segmented image 

 

3.1 Object Detection 

Recent advancements in deep learning-based computer vision models have made the development 
of object detection applications easier than ever. Besides significant performance improvements, they 
also have the ability to leverage transfer learning to lessen the need for large datasets [14]. This has 
seen a shift toward end-to-end solutions [2,8,14]. Several algorithms exist and can be used for object 
detection such as Faster R-CNN, YOLO, SSD, ACF, VGG, etc.  

YOLO is a single stage object detector and considered to be one of the fastest real-time object 
detection algorithms as compared to two stage deep learning detectors [9, 15]. To this end, the 
YOLOv2 algorithm [13] was adopted. Figure 2 shows the general network architecture. The network 
mainly consists of two subnetworks – A fixed feature extraction network followed by a detection 
network. The feature extraction network is a ResNet-50 pre-trained on the ImageNet dataset. The 
detector subnetwork is a smaller CNN with 9 layers specific to YOLOv2. The layers after 
‘activation_40_relu’ in the ResNet are replaced with the YOLOv2 layers. This feature layer outputs the 
feature maps that are downsampled by a factor of 16. This gives a good trade-off between spatial 
resolutions and the strength of extracted features. The input of the network is from the images taken 
by the stereo cameras. The output is the bounding box of the workpiece and the objectness score. 
The YOLO v2 uses anchor boxes to detect the classes of the objects in the image by predicting the IoU, 
anchor box offsets, and class probability for each anchor box [13]. The analysed network had a total 
of 150 layers.  
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Figure 2 Network Architecture of the yolov2ObjectDetector 

3.1.1 Estimating Anchor Boxes 

The network uses Predefined bounding boxes of a certain height and width located in the 
yolov2TransformLayer Figure 2. They are used to capture the scale and aspect ratio of the specific 
object class(one class in this case), usually selected based on the size of objects in the training data 
[16]. The training data for estimation had to be resized to the required input size to account for the 
resizing of the training data; this was done using the transform function. 9 anchors were used for this 
experiment; this predicts 9 anchor boxes in each grid cell and selects the box with the highest 
confidence scores using NMS. An IoU (objectness score) would be predicted for each to give a mean 
score, which shows how confident the system is of the chosen class. Bounding boxes are estimated to 
be within these areas. 

3.1.2 Dataset  

Training the detector to spot objects required a labelled dataset. The data set was labelled manually 
using the Image Labeler app on MATLAB and exported as the ground truth data. This was a bit time 
consuming as each cube in each image has to be assigned a rectangular ROI label. The ground truth 
data was then used to create the training data. The training dataset was split into three parts; 75% for 
training, 10% for validation, and the rest for testing the trained detector. The dataset had to undergo 
pre-processing and was resized to an input size of [256 256 3]. Data augmentation was applied to the 
training data to help improve network accuracy by adding variation to the data. This is not applied to 
the validation and test data to avoid biased evaluation. 

3.1.3 Implementation 

To train the network, a checkpoint path was set in case the was any power outage or system failure 
which could interrupt the training. The network used a stochastic gradient descent with momentum 
(sgdm). The initial learning rate was set 10!" to slow down the learning in the transferred layers, 
validation data was set to the pre-processed validation data, and max epoch at 50. The validation 
frequency was set to 5. The mini-batch size was set at 2 observations at each iteration to divide the 
training data evenly (total = 74 observations). This would give a total of 1850 iteration. Data shuffling 
was set ‘every epoch’ to avoid discarding the same data every if the batch size didn’t divide evenly. 
The Execution environment was set to ‘auto’ and verbose was true. The network was also set to plot 
the training progress. 
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3.2 Semantic segmentation 

Real-world object manipulation requires precise object localization. Henceforth, an approach 
involving pixel-level segmentation in relation to robot arm manipulation is studied.  

Semantic segmentation is one of the fundamental domains of computer vision, which operates by 
assigning category labels to each pixel in an image. Current state-of-the-art methods mainly rely on 
fully convolutional neural network architectures, that are trained by optimizing a per-pixel loss 
between predictions and ground truth labels [18]. Unlike object detection, this method offers a much 
more detailed representation of the object. Several networks which can be used for semantic 
segmentation include DeepLab, FCNs such as SegNet and U-Net [19]. From the different learning 
architectures proposed, [20] the DeepLab model by Google has stood out to give the most accurate 
results. To this end, the Deeplab v3+ CNN was adopted. Figure 3 shows the general architecture of the 
model adopted. 

The model consists of a DeepLab v3+ network with weights initialised from a pre-trained ResNet-50 
network. The DeepLab model is generally composed of two phases: the encoding phase which extracts 
the essential information from the images using a pretrained network and the decoding phase which 
uses the extracted information to reconstruct the output using appropriate dimensions [20]. The 
output is a segmented image. The final convolutional layer is adjusted for each task to reflect classes 
present in the dataset. The analysed network had a total of 206 layers. 

 

Figure 3 DeepLab v3+ Encoder-Decoder Architecture [21] 

The Deeplab v3+ model shown in the figure above is similar to ours. The DeepLab v3+ replaces all max 
pooling operations with depthwise separable convolutions with striding, adds extra batch 
normalisation and ReLU activations after 3 x 3 depthwise convolutions, and increases the depth 
without changing the network structure's entry flow. The encoder has a 16-bit output stride (the ratio 
of the original image size to the size of the final encoded features). To reduce the number of channels, 
1 x 1 convolutions are applied to the low-level features prior to concatenation. Following that, a few 
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3 x 3 convolutions are used, and the features are upsampled by a factor of four to produce an output 
that is the same size as the input image. 

3.2.1 Balancing Classes 

The pixels were divided into three different subsets, and the dataset was analysed to view the 
distribution of class labels. From this analysis of Figure 4, an imbalance was observed. The scenes have 
more belt pixels than cube and background because the belt covers more area in the images. This 
imbalance would bias the learning process to favour the dominant class and would classify every pixel 
as “belt”. To prevent this and improve the training results, the class weights are used to balance the 
classes using median frequency balancing [19], specifying it using the pixelClassificationLayer and 
replacing the last layer in the network with this layer. 

 

Figure 4 Class distribution of pixels 

Table 2 Effects of median frequency balancing 

Classes Frequency Class weights Balanced frequency 
Belt 0.825 0.187721746036106 0.155 

Cube 0.025 5.92833247855132 0.148 
Background 0.15 1.00000000000000 0.15 

 

3.2.2 Dataset 

Training the network to classify every pixel in the images required pixel labelled data. As in object 
detection, similar methods were used with the only difference being the label type. This method was 
exceptionally time-consuming as the whole image had to be assigned pixel ROI labels. 

3.2.3 Implementation  

The network is finetuned using sgdm. We follow [19] and set the learning rate to 10!", use 
L2regularization of 0.0005 to prevent the validation data from overfitting with the training data, a 
verbose frequency of 2, and shuffle every-epoch. However, the validation frequency is set to 10 
iterations, and validation data specified to the pre-processed validation data. The maximum number 
of epochs is reduced to 30 since the dataset is small and a larger epoch gives a larger iteration which 
increases training time. The mini batch size is set at 2 to divide data evenly. This would give a total of 
1110 iterations. The network environment was set to auto and the training progress was plotted. 
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4 Stereo Vision 

A stereo camera configuration is used in this investigation. The two cameras are focused on the line 
of sight; this is where a sensor on the belt detects the workpieces’ and halts the movement. The 
cameras then estimate the position of the workpiece and the manipulator then plans a trajectory to 
perform the pick and place action. This is very important as stereo geometry recovers the shape from 
the motion between the two different views and gets a sense of depth (see 4.2). 

The model is a simple stereo system (coplanar image planes). The cameras are initially calibrated to 
obtain the extrinsic and intrinsic parameters. The depth is estimated using two independent methods: 
estimating depth via stereo matching with developed algorithm summarized in 4.3.1. Estimating depth 
from computing a disparity map. 

4.1 Pose Estimation 

Two vertically aligned cameras, Figure 5 separated by baseline 𝐵, and have a focal length 𝑓, observing 
a scene point O (X, Y, Z) in the image plane would observe in the same optic axes vertically, henceforth 
the x coordinates can be used to calculate the disparity [17]. To achieve this the cameras are calibrated 
to fix the lens distortion between the two cameras and rectify the system afterwards. Anil [11] states 
that all measurements hold error and articulates that these values cannot be recognized without the 
true values of the quantities being measured; describes calibration in itself as an evaluation method 
of determining and documenting how much of the equipment is in error with the actual value. 

 The calibration and rectification algorithm uses a known object (120 image pairs of a checkerboard) 
of size [1000 by 1000]mm with [8 by 8] 125mm squares. The points of the board are detected, and 3D 
world coordinate points are generated. The image points are also computed. Consider a 
transformation from w to c, the extrinsic parameters which describe the relative pose in 3D space 
expressed as, 

𝒄→
𝑷
= 𝑹𝒘𝒄 	 ∙ 	𝒘→

𝑷
	+ 𝒕𝒘𝒄 ,                  Equation 1 

where 𝑤→
"

 is the points in the world frame and 𝑐→
"

 is the points in the camera frame; both [4x1] 

vectors corresponding to the [x ,y, z,] coordinates. The [3x3] rotation matrix 𝑅!"  is the rotation 
from world to camera frame and the [3x1] translation vector is the translation from world to 
the camera frame. The intrinsic parameters which describe the relative pose in the 2D image 
plane expressed as, 

  𝑷′///⃗ = 𝑲	 ∙ 		𝒄→
𝑷

,                                     Equation 2 

where 𝑃′&&&⃗  is the [3x1] homogeneous pixels vector in the image plane. The [3x3] intrinsic matrix 
𝑲. The homogeneous coordinates of both parameters expressed as, 

𝒄→
𝑷
= #

𝑹𝟑×𝟑𝒘
𝒄 𝒕𝟑×𝟏𝒘

𝒄

𝑶𝟏×𝟑𝑻 𝟏 ( ∙ *
𝒙
𝒚
𝒛
𝟏

-
𝒘→
𝑷

………		𝑷*1111⃗ = 3
𝒛 ∗ 𝒖
𝒛 ∗ 𝒗
𝒛
8 = *

𝒇 𝒔 𝒄𝒙
𝟎 𝝏𝒇 𝒄𝒚
𝟎 𝟎 𝟏

- ∙ *
𝒙
𝒚
𝒛
𝟏

-
𝒄→
𝑷

,  Equation 3 
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S is the skew between camera points. 𝑐# and 𝑐$ are the offsets (principal points) of u and v. 
The separating scaling factor between u and v is 𝜕. 

4.1.1 Calibration 

The cameras were calibrated to give the extrinsic, intrinsic and lens distortion parameters. The 
calibration computed 2 distortion parameters, with no skew and optical centre at the centre. This 
gives the camera parameters as well as the estimation errors which state how accurate the results 
are. The images were rectified using the parameter to remove the lens distortion. From the 
computation, only 37 out of the 120 image pairs were considered to give a low reprojection error. 

4.2 Depth 

Humans are able to perceive depth from two perfectly aligned eyes which also allow for 3D sight. 
Images viewed from one eye is a little different from the other eye; this creates a difference in 
perspectives. Viewing objects that are far away doesn’t ascertain the same result. This is because the 
human brain automatically processes the differences and enable us to sense depth [17]. 

 

Figure 5 Stereo geometry (Parallel optical axis)[] 

 

Stereo vision can be used to estimate depth. The diagram above shows our setup and is summarized 
in section 4.1. O is the scene point located at a distance Z from the camera’s centre of projection (ZL 
and ZR) and is projected into the left and right cameras. The distance X is positive in the left camera 
(CL) and negative in the right camera(CR) X’, points oL and oR  in the image plane are the distances xL 
and negative xR to the right and left of the optical axes respectively. The diagram contains similar 
triangles (CL, O, CR) and (OL , O, OR). Writing the equivalent equations,  

𝑩!𝐱𝐑'𝐱𝐋
𝒁!𝒇

= 𝑩
𝒁

,                  Equation 4 

Yields the expression for Z , 

x# 

x$ 
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𝒁 = 𝒇 𝑩
𝐱𝐋!𝐱𝐑

,                              Equation 5 

The difference between the left and right amount is the disparity, 

(𝐱𝐋 − 𝐱𝐑),                          Equation 6 

The intra-ocular distance or B which is the translation between the optical centres of the two 
cameras can be obtained from translation vector 𝑇%	within the perspective projection equation, 
which is Eq 1 and Eq 2 combined. Thus giving, 

𝑷,////⃗ = 6
𝒖
𝒗
𝟏
: = 𝑷𝒓𝒐𝒋𝒆𝒄𝒕[𝑴,𝒘→

𝑷
],      Equation 7 

 𝑴 = 𝑲	𝑻𝒕	𝑹𝒐,                                         Equation 8       

𝑅& is a [3 x 3] rotational matrix of camera 2 relative to camera 1, Project is a [3 x 4] 
projection matrix. 

4.3 Stereo Matching 

Stereo matching is one of the oldest approaches to 3D measurement and is a simpler setup compared 
to other 3D measurement methods[6]. This method compares the intensity values of pixels that lay 
on the same epipolar line in blocks of the same size between the two images and select the locations 
with minimum match cost. We use stereo matching methods in conjunction with each other to obtain 
two independent sets of results. We develop a feature-based extraction algorithm that uses the 
corresponding candidate pairs to estimate the depth. From this, we also estimate a disparity range 
centred around the object of interest and compute a disparity to be used to estimate the depth. 

4.3.1 Feature-based matching 

The left and right images are from the individual cameras and the detector made in section 3.1 is used 
as the input to the depth calculating algorithm (Algorithm 1). The overall framework is shown in Figure 
6 and is outlined in the following steps: 

Step 1. Image rectification: This procedure removes the lens distortion between the cameras and 
corrects the images. This was done using the stereo camera parameters in 4.1.1. 

Step 2. Detect ROI (cube): The detector was used to estimate the position of the cubes in the rectified 
images. Because the input size of the detector is smaller than the actual image, the images had to be 
resized.  

Step 3. Feature-based detection: Detects the local features within ROI of the images which have 
unique content, use a descriptor to extract the detected features around the specified region. To 
prevent undue loss of information, the bounding boxes were scaled up and the rectified images from 
step 1 were used. 

Step 4. Matching: Obtain candidate matches between the features and use indices to collect the actual 
point location from both images. 
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Step 5. Calculate depth (Z): (Eq 5) and was used to calculate the distance of the cubes from the 
camera’s centre of projection. Likewise, the X and Y positions are calculated using the estimated depth 
value. 

The algorithm was then tested for accuracy by calculating the RMSE value. Each step is explained 
further in the subsequent section. 

 

Figure 6 Data flow diagram of the position estimation algorithm 

 

4.3.1.1 Methodology 

1. Image rectification – This uses the translation and rotation vectors from the stereo parameters 
to align the image pairs in the y-axis so that each point observed by the cameras are in the 
same row in the images from each camera. Because the 2-D stereo correspondence problem 
is reduced to a 1-D problem, this process is useful for stereo vision. 

2. Detect the cube – The detector uses an input size of [256 256 3], and the rectified images are 
[2033 2032 3]. To be able to detect the cubes in the image pairs, the rectified images had to 
be resized to the detector input size before the detector is run and outputs the bounding 
boxes and mean IoU scores. See Figure 13. 

3. Feature-based detection – The images are converted to grayscale for 2D analysis. To achieve 
greater accuracy in the detection, a combination of a blob (KAZE), and a corner (BRISK) 
detector are used in conjunction with binary (FREAK) and gradient based (KAZE) descriptor. 
The KAZE detector function constructs a scale space for the given image using nonlinear 
diffusion. The scale space is then used to detect multiscale corner features, similar to SURF 
but less noisy. The BRISK detector employs a Binary Robust Invariant Scalable Keypoints 
algorithm to detect multiscale corner features. Computing binary descriptors are faster but 
not as precise as gradient-based, while blob detections are more computationally intensive 
than corner detections [24]. The features are only detected with the regions specified by the 
bounding boxes. The bounding boxes obtained from the previous step had to be scaled up to 
match the initial size of the rectified images. The reason for only scaling the boxes and using 
the rectified image pairs is to minimize the loss of information caused by quantization when 
the pixel intensities are divided by the decimal scale.  



 13 

4. Matching – Determine candidate matches by matching FREAK descriptors first, and then KAZE 
descriptors. To obtain as many feature matches as possible, the max ratio was increased to 
0.7 for the FREAK. Obtain the candidate matched point; candidate meaning that some points 
could be incorrect. That is why two descriptors are used. See Figure 14. 

5. Calculate depth (Z) – Using the matched points to calculate the average disparity between the 
images using the matches which have a zero gradient (y/ − y0 ≅ 0). This value is then used 
to estimate the depth using (Eq 5). The calculated depth value is then used to estimate the X 
and Y axis positions. From the disparity calculation, the disparity range is also obtained using 
the maximum and minimum disparity found in the image. To estimate the X and Y positions, 
the camera coordinate frame was set using the left optical centre as the reference point. The 
positions are estimated using the formula, 

𝑿 = 𝒁𝒙𝑳
𝒇
,						𝒀 = 𝒁𝒚𝑳

𝒇
,           Equation 9 

Where xL and yL are the differences between the principal points (u0, v0) and the points on the 
line (uL, vL). 

4.3.2 Disparity map 

A disparity map is one of the outputs of stereo matching and is can be used to estimate depth. The 
depth from the disparity map is very important for numerous fields such as virtual reality and in our 
case ‘robotics’ [3]. When a disparity map is precise, robot manoeuvrability is improved. Even so, 
disparity maps play an important role in three-dimensional (3D) reconstruction from input images in 
the real world. When viewing the contrastive perspectives, the disparity map displays critical 3D 
information for assigning image pixels to precisely produce the depth of the dissimilar detected 
objects when examining the opposing viewpoints. 

With all of its benefits, depth estimation from disparity maps is one of the most difficult and intricate 
problems. Many studies have been conducted in recent years to address this issue, and significant 
progress has been made. [3] suggests an improvement of the disparity refinement stage using 
adaptive least square plane fitting. Their method proposes multiple point disparity selections on a 
plane to adaptively group similar disparity values, then calculate the distance of each disparity to 
ensure they are accurately grouped, and this is understood to improve the accuracy on the plain colour 
or low texture regions, repetitious pattern, and depth discontinuity area. Schwarz et al. [12] present 
a simple technique for fusing three separate sources of depth information, thereby improving overall 
depth measurement accuracy and incorporates this into their training. Such methods would require 
GPU to reduce computation time. [6] propose a novel stereo matching method that makes use of 
surface normal data derived from the photometric stereo technique. 

To compute our disparity map, we use the disparity range obtained in step 5 of the featured-based 
matching technique. The range is the difference be maximum and minimum disparities from the 
calculated average disparities using the matched points.  The disparity map is then computed using 
block matching. This method uses the sum of absolute difference (SAD), as the cost function to 
estimate the displacement between the pixels in the rectified stereo image pair.  Pixels are marked 
for unreliability using a uniqueness threshold value of 25. A block size of 11 is set as the width of the 
search window. This generates a 2D grayscale image as a disparity map with the same dimensions as 
the input images. Each value in this output denotes the displacement between conjugate pixels in a 
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stereo pair image. The average depth value is calculated by combining this image with the binary 
logical mask of the predicted segmentation ground truth and obtaining the mean value. The Proposed 
algorithm (Algorithm 2): 

 
 

Figure 7 Depth from disparity map algorithm 

Summary: 

The algorithm is fed the input image pairs, the segmentation network, the detector, and the stereo 
parameters. It then invokes the position estimation function (Algorithm 1), which computes the 
disparity map using the disparity range and rectified images. The network is then used to segment the 
left image, and the binary logical mask for the cube is obtained as a result. The mask and the disparity 
mask are then combined to give the depth by performing element-wise multiplication and obtaining 
the mean value as the depth.  
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5 Experimental Results 

During the course of this research, all data used was gathered from a particular robotic simulation 
software; CoppeliaSim. In order to validate the performance of the proposed pipeline, we evaluate 
the two detection methods for level of accuracy of recognition of the workpiece, evaluate the error 
estimates from the stereo calibration to analyse the accuracy of the pose estimation, evaluate 
Algorithm 1 for speed and accuracy for accuracy by comparing our position estimate with the dataset 
provided and performing a regression analysis. We also evaluate the depth map computed in section 
4.3.2 and evaluate the estimated depth using the disparity map and segmented images. Finally, the 
algorithm is put to the test through simulation. 

5.1 Object detection and semantic segmentation 

The training and prediction of the DCNNs are implemented on an Intel Iris Plus, 2.3GHz Quad-core 
Intel Core i5 CPU with 8GB RAM. For evaluation, the pre-processed test datasets were used. Both 
datasets contained 16 images. This is a very small test set and highpoints the effectiveness of the 
transfer learning approach. Figure 8 depicts a segmentation and object detection result for an example 
scene from the dataset. 

 

Figure 8 Object detection and segmentation results 

Figure 8 left – right: Input RGB image frame1, predicted segmentation of image2, the binary logical 
mask of the segmented image of the workpieces’3, predicted bounding boxes and mIoU of 
workpieces’4. 

5.1.1 Object detection 

Traditional methods using common metrics such as average precision and log average miss rate are 
employed. The mean average precision(mAP) provides a single number that incorporates the 
detector's capacity to make correct classifications (precision) as well as the detector's ability to find 
all relevant objects (recall). This was done using an initial threshold of 0.7; this determines the extent 
of overlap of the bounding box around the workpiece given by the YOLOv2 detector over the bounding 
box of the same workpiece in the ground truth. [15]The precision/recall (PR) curve Figure 9[left], 
highlights how precise a detector is at varying levels of recall. The ideal precision is 1 at all recall levels. 
The log average miss rate Figure 9[right] operates opposite to the mAP. Provides a number that 
incorporates the detectors’ ability to make wrong classifications (miss rate), and also find irrelevant 
objects(fppi). Given an initial threshold value of 0.7. 
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The detector is evaluated using different threshold values to see how it affects the accuracy of the 
detection. Table 3 shows the precision and miss rate using the different threshold values and Figure 9 
show the plots. 

Table 3 Precision and Miss rate for different thresholds 

 Threshold 
  0.7 0.75 0.8 
mAP 1.00 1.00 0.96 
Log average miss rate 0.00 0.00 0.08 

  

 

Figure 9 Average precision and Miss rate 

 

5.1.2 Semantic segmentation 

The segmentation performance was defined by the 'success rate,' which is defined as the percentage 
of evaluation images segmented with an intersection over union (IoU) greater than 0.75 (75%) [22], 
and accuracy greater than 0.9 (90%). The accuracy represents the percentage of correctly identified 
pixels in each image class defined as, 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 = 	 𝐓𝐏'𝐓𝐍
𝐓𝐏'𝐓𝐍'𝐅𝐏'𝐅𝐍

,           Equation 10 
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Where TP are the correctly classified pixels, TN are the pixels correctly classified as false, FP are the 
predicted incorrect pixels classified as correct, FN are the labelled pixels in the ground truth incorrectly 
classified. 

 The IoU is a statical measurement of accuracy that penalises false positives (FP). The IoU for each 
class is the proportion of correctly classified pixels to the total number of pixels assigned by the ground 
truth and predictor in that class defines as, 

𝐈𝐨𝐔 = 	 𝐓𝐏
𝐓𝐏'𝐅𝐏'𝐅𝐍

,             Equation 11 

The network is run over the pre-processed test dataset using a minibatch size of 4; this returns the 
results for the test. The predicted labels from the test set are then compared with the ground truth 
labels. This computation process returns various metrics for the entire test set, for individual classes, 
and each test image. The dataset metric is first inspected. This metric provides a high-level overview 
of the network’s performance. 

Table 4 Dataset Metrics 

Global accuracy Mean accuracy MeanIoU WeightedIoU MeanBF score 
0.99256 0.99660 0.94195 0.98587 0.98511 

 

Table 4: The global accuracy ratio is the proportion of correctly classified pixels, regardless of class, to 
the total number of pixels. The mean accuracy is the average accuracy of all classes in all images. The 
MeanIoU is the average IoU score of all classes in all images. The average IoU of each class is weighted 
by the number of pixels in that class to calculate the weighted IoU. The MeanBF score is the average 
BF score of all classes in all images. 

The class metric is then inspected to evaluate the classification accuracy. This shows the impact each 
class has on the overall performance. 

Table 5 Per-class metrics 

Classes Accuracy IoU MeanBF score 
Belt 0.99111 0.99091 0.99084 
Cube 0.99972 0.85212 0.966099 
Background 0.99899 0.98282 0.99839 

 

Table 5: Accuracy - The proportion of correctly classified pixels in each class to the total number of 
pixels in that class based on ground truth (Eq 10). IoU for each class. The MeanBF score for each class 
is the average BF score of that class across all images. 

Note: The contour matching score for the F1 boundary (BF) indicates how well the predicted boundary 
of each class aligns with the true boundary. 

The normalised confusion matrix displayed as a heatmap which shows the percentage count of pixels 
belonging to the true class versus the prediction, divide by the total number of pixels predicted. 
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Figure 10 Normalised confusion matrix heatmap 

Inspect the average IoU of all three classes in the images. 

 

Figure 11 Histogram of per-image intersection over union (IoU) 

5.1.3 Evaluation  

When compared to the semantic segmentation network, the object detector with object detection 
algorithm has been shown to have an average precision of 96%, Table 3 and Figure 9. The DeepLab 
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model was able to classify over 99 percent of the pixels in the image for segmentation. Table 5 shows 
that, while the dataset's performance is quite high, the class metrics show that the underrepresented 
'cube' class is not as well segmented as the 'background' and 'belt' classes. Figure 9 displays this 
statistic. The heatmap shows the cube pixels having the highest percentage of false positives 
(0.5775%). Overall, the segmentation algorithm was successful in segmenting pixels in the images (IoU 
> 80% & accuracy > 90%). 

5.2 Camera calibration 

The calibration results in the creation of an object that stores the intrinsic and extrinsic parameters of 
the two cameras as well as their geometric relationship. The geometric relation parameters as shown 
in Eq 8 as well as the fundamental matrix, the essential matrix etc. The matrix K intrinsic parameters 
of the cameras obtained by the calibration, 

𝑲 = Q
𝑓7 0 0
0 𝑓8 0
𝑢9 𝑣9 1

T 

Where 𝑓7 and 𝑓8 are the focal length of the horizontal and vertical axis in pixel dimensions, 𝑢9 and 𝑣9 
are the principal points. 

The translation matrix 𝑻𝒕 of camera 2 relative to camera 1, 

𝑻𝒕 = [−𝑩 0 0] 

Where baseline, B is the intra-ocular distance between the two cameras translating from camera 2 to 
camera 1, hence the negative. 

The accuracy of the stereo calibration is evaluated using the visualising obvious errors from the camera 
extrinsic, the mean reprojection error and examining the estimation errors from the calibration.  

Plotting the camera's and calibration pattern's relative positions is a quick way to detect obvious 
errors. For example, if the pattern is behind the camera or the camera is behind the pattern, or if the 
pattern is too far or too close to the camera. 

 

Figure 12 Extrinsic Parameters 

Figure 12, [left] calibration pattern locations in the camera's coordinate system, [right] camera 
positions in the pattern's coordinate system. 



 20 

The mean reprojection error gives a good estimation of just how accurate the estimated parameters 
are. This is the average Euclidean distance in pixels between reprojected and detected points across 
all image pairs []. The closer the re-projection error is to zero, the more accurate the parameters are. 

 

Figure 13 Reprojection Errors 

From the extrinsic parameter visualisation, obvious errors could not be detected as image frames and 
camera frames were clustered. The calibration achieved a mean reprojection error of 0.0463 which 
was satisfactory. The error number could still be improved by adding more distortion coefficients or 
removing more image pairs with higher errors. 

The estimation errors represent the degree of uncertainty associated with each estimated parameter. 
This function returns the standard error for the estimated stereo parameter. The standard error (in 
the same units as the corresponding parameter) that is returned can be used to compute confidence 
intervals [25]. Appendix A displays results. 

5.3 Depth Estimation 

Of the two methods used to estimate the positions of the items, only the feature-based matching 
algorithm was able to give desired values. 

5.3.1 Feature-based matching 

The algorithm was able to estimate the position [x y z] of the workpieces using the matched feature 
points. The combined feature detectors were able to detect a fairly large number of points with the 
ROI but achieved a match rate of about 35%. 

The standard deviation of prediction errors (RMSE) was used to evaluate the performance of depth 
and position estimation, as well as the speed of programme execution. Only 99 of the 100 image pairs 
allowed the algorithm to estimate the positions of the workpiece. The mistake appeared to have 
occurred during the feature detection phase. As the error message pointed out the ROI input, it was 
assumed that the detector failed to detect the cube and output its bounding box. The execution of 
the function took about 6.174s. Figure 16 show the error comparisons. Some trends were observed 
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from the compared values; the estimated Y values were greater than the actual Y values, the estimated 
depth values were smaller than the actual depth value whilst the x values varied. From the regression 
analysis performed, the RMSE was obtained as 0.0079394 metres; equivalent to 7.94 millimetres. 

 

Figure 14 Correctly detected workpiece 

 

Figure 15 Corresponding matches found 

5.3.2 Depth from the disparity map 

Unfortunately, this method did not perform how it was expected, but probable causes for the poor 
performance were identified. Because the disparity range is obtained using the matched points, the 
disparity map is computed using the max and min value from the points the disparity, but from Figure 
15 it can be observed that the corresponding points found do not cover the whole area of the desired 
object. Just like the matching algorithm, the disparity map computed fails to find all corresponding 
matches within the range and output a map with few pixels. Because of these missing pixels, the depth 
estimation is inaccurate as there not enough pixels to obtain a reasonable mean value. Ways to 
improve the disparity would be explored.  



 22 

 

Figure 16 Comparison of real and estimated values as well as regression analysis of Algorithm 1 

 

5.4 Task Execution 

In order to investigate direct transfer to a real robot, the simulation environment had to be as close 
to the real world as much as possible. A 6-DOF NiryoOne robot arm, two camera modules, a conveyor 
belt, two spotlights, workpiece cubes, and a bin comprise the simulation setup. To reduce complexity, 
the manipulator is stationary, the joint positions for the six joints are determined ahead of time, and 
the trajectory to the bin is calculated so that the robot knows where it is without having to necessarily 
locate it. 

The control and computation of task are done on a single computer equipped with an Intel® Core™ i3 
CPU (2.50GHz) with 8GB RAM. The code to perform the pick and place task is run on MATLAB and the 
simulation on CoppeliaSim. The software’s are linked using a remote API server. To summarize the 
operation, the belt is equipped with a proximity sensor that acts as the line of sight for the robot and 
halts the conveyor belt when an item is detected. The streamed images from the stereo cameras are 
then processed to detect the item of interest Figure 14 and estimate the position of the item using 
the algorithm developed in section 4.3.1, the joint values are then obtained from the estimated 
position and the pick and place action is initiated. The manipulator behaved as expected, moving 
towards the cube and performing the pick and place action, implying that the transition from 
simulation to real-world is possible.  
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Figure 17 Detected object from stream; left and right images 

 

Figure 18 Visualisation of simulation 

Figure 14: A real-world setting for a virtual-reality simulation (a). The proximity sensor flashes, 
indicating that an object has been detected and action is required. The robotic arm recognises the 
item, estimates its position, and attempts to grasp it (b). The robot arm successfully grasps and lifts 
the workpiece before performing the place action (c). After dropping, the arm moves to the next target 
and the process is repeated (e). 

 

Figure 19 Task execution with workpiece at different positions 
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6 Discussion 

The accuracy of the segmentation model was about 3% higher than that of the object detector. 
However, the segmentation model does not overlap for the cube class as well as the other classes 
present in the ground truth data as seen in Table 5. Perhaps using a different weight balancing method 
might improve the results. The YOLO detector completed 1850 iterations in about 62 minutes which 
seems like a very long time; However, the detector was able to achieve a  very low loss of 0.0087 and 
RMSE of 0.0932 which were considered acceptable. Initially, the detector was trained using 7 anchor 
boxes, but this proved insufficient when applying the position estimation algorithm as the network 
could not detect some of the bounding boxes accurately, hence the change to 9 anchor boxes for more 
areas of detection.  The segmentation network completed 1110 iterations in  84 minutes achieving an 
accuracy of 99.3%. On the first attempt, the segmentation model failed to properly segment the 
image; this was due to the class weights being unbalanced, so the network classified almost all pixels 
as ‘belt’, hence the use of class weights in section 3.2.1. Overall, both models were able to detect the 
workpiece accurately. 

The featured-based matching approach fared better than the disparity map computation when 
estimation the position of the item. The computation time was 6.174s  which isn’t too slow but could 
be improved. From the profiling results, it was observed that about 59 % of the computation time was 
spent on the feature extraction. This was hugely taken up by the KAZE extraction; as noted in 4.3.1.1 
gradient-based descriptors are more computationally intensive. It was noted that only 35% of the 
detected point were able to find corresponding matches. Though this number seems low, compared 
to single detectors the performance was significantly better; Appendix C shows results of single 
feature detector matching. More matching could be obtained by adjusting some of the parameters of 
the matching function such as the thresholding and ratio, bearing in mind that this could introduce 
inaccurate correspondences. At first, the position estimation did not yield plausible results for the x 
axis, this was due to the coordinate frame being set in the middle of the two cameras and calculation 
being done with the left camera centre as the reference point. This was later corrected, and the new 
dataset yielded better results. The algorithm was assumed to have a 99% estimation rate in view that 
it was able to estimate the positions in 99 out of the 100 images. The RMSE revealed the error to be 
about 7.94mm which is below a centimetre but could be improved upon. Perhaps following the 
methods of [12] and combining the posteriors of the segmentation and object detection could yield 
greater accuracy.  

The task execution was successful but was extremely slow. To complete a single pick and place action 
took 3m 41s. Even at that, the code performed accurately. After 100 episodes the manipulator never 
once failed to detect the workpiece or drop the item. The robot had also displayed the ability to detect 
the item at different positions on the belt as seen in Figure 19. Improvements to the execution time 
could be made. Perhaps a parallel execution environment or the use of a GPU could speed up the 
process. 

This project was initially started on Python, but it was later moved to MATLAB. This was due to the 
calibration dataset not being compatible with the software. Attempts will still be made to write this 
in the Python programming language. MATLAB, on the other hand, proved to be adequate for the 
task. With very little prior knowledge of computer vision and deep learning, this project was 
undertaken.  



 25 

7 Conclusion 

In this paper, we proposed a computer vision pipeline that allows for a manipulator to detect 
workpieces on a conveyor belt. We explored two independent methods of detecting the items. Both 
methods achieve high detection accuracy 96% for the YOLO object detector and 99.11% for the 
DeepLab segmentation model. We also explored two way in which the positions of the items in the 
image can be estimated. The calibration had a mean reprojection error of 0.0463 pixels. 
Unfortunately, only one of the algorithms was able to deliver plausible results. Algorithm 1 was able 
to achieve an estimation RMSE of 7.94mm. The robot was able to estimate the various positions of 
the workpiece execute that pick and place task without any error. From the results of the experiment, 
we can conclude that: 

• Computation of disparity maps is still a very challenging field and requires more research 
• Object detection and semantic segmentation are effective methods that can be used for 

object recognition in computer vision. 
• It is possible for a robot to accurately estimate the position of items within an image to 

execute a task using computer vision algorithms. 

Key achievements include: 

• Ability to develop an image processing pipeline. 
• Successfully developing a position estimation algorithm. 

The framework of the proposed estimation algorithm can be extended to different objects using a 
specified detector and stereo calibration parameters. 

Related codes to the estimation algorithm are available online at:  

https://github.com/aniekanBane/stereo-geometry.  

Further investigations into the disparity map computation and the combination of detectors 
posteriors would be the future direction for improvements.  
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9 Appendix A 

  Standard Errors of Estimated Stereo Camera Parameters 

   ----------------------------------------------------- 

 

Camera 1 Intrinsics 

------------------- 

Focal length (pixels):     [ 2472.2443 +/- 0.0928     2472.1777 +/- 0.0901  ] 

Principal point (pixels): [ 1024.3966 +/- 0.0710     1024.5489 +/- 0.0690  ] 

Radial distortion:            [   -0.0000 +/- 0.0004        0.0004 +/- 0.0037  ] 

 

Camera 1 Extrinsics 

------------------- 

Rotation vectors: 

                         [    0.0001 +/- 0.0001        0.0000 +/- 0.0001       -1.5708 +/- 0.0000  ] 

                         [   -0.3140 +/- 0.0001       -0.5167 +/- 0.0001       -2.1199 +/- 0.0000  ] 

                         [   -0.3172 +/- 0.0001        0.5443 +/- 0.0001        0.5835 +/- 0.0000  ] 

                         [    0.6128 +/- 0.0000        1.1095 +/- 0.0000       -1.8262 +/- 0.0000  ] 

                         [    0.4017 +/- 0.0000        0.2447 +/- 0.0001        0.9902 +/- 0.0000  ] 

                         [    1.0085 +/- 0.0000        0.4322 +/- 0.0000        0.8134 +/- 0.0000  ] 

                         [   -0.5448 +/- 0.0000        0.9234 +/- 0.0000        0.5623 +/- 0.0000  ] 

                         [    0.8255 +/- 0.0000        0.1303 +/- 0.0000        1.3405 +/- 0.0000  ] 

                         [    0.6124 +/- 0.0000       -0.6468 +/- 0.0000       -0.7236 +/- 0.0000  ] 

                         [   -0.0910 +/- 0.0001        0.3903 +/- 0.0001       -0.2822 +/- 0.0000  ] 

                         [    0.8653 +/- 0.0000       -1.0396 +/- 0.0000       -1.3536 +/- 0.0000  ] 

                         [   -0.2564 +/- 0.0001        0.4635 +/- 0.0001       -1.3314 +/- 0.0000  ] 

                         [   -0.2760 +/- 0.0000       -0.7824 +/- 0.0000        1.4832 +/- 0.0000  ] 

                         [    0.4836 +/- 0.0000        0.7454 +/- 0.0000        1.4768 +/- 0.0000  ] 
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                         [   -0.8276 +/- 0.0000       -0.1985 +/- 0.0000        1.7759 +/- 0.0000  ] 

                         [   -0.6369 +/- 0.0000        0.7331 +/- 0.0000        0.1212 +/- 0.0000  ] 

                         [    0.2159 +/- 0.0001       -0.2757 +/- 0.0001       -0.5463 +/- 0.0000  ] 

                         [   -0.9410 +/- 0.0000        0.3873 +/- 0.0000       -0.2107 +/- 0.0000  ] 

                         [    0.2687 +/- 0.0001        0.7851 +/- 0.0001       -2.0487 +/- 0.0000  ] 

                         [    1.0201 +/- 0.0000        0.6813 +/- 0.0000        2.0400 +/- 0.0000  ] 

                         [    0.5464 +/- 0.0000       -0.6070 +/- 0.0000       -0.1739 +/- 0.0000  ] 

                         [   -0.3480 +/- 0.0000        0.8497 +/- 0.0000       -0.8603 +/- 0.0000  ] 

                         [    0.4921 +/- 0.0000       -0.2071 +/- 0.0001       -0.5308 +/- 0.0000  ] 

                         [   -0.8539 +/- 0.0000       -1.1109 +/- 0.0000        1.4035 +/- 0.0000  ] 

                         [    0.4018 +/- 0.0001       -0.5793 +/- 0.0001       -0.4388 +/- 0.0000  ] 

                         [   -0.2030 +/- 0.0000       -0.6366 +/- 0.0000       -0.3327 +/- 0.0000  ] 

                         [    0.5114 +/- 0.0001       -0.1617 +/- 0.0001       -2.0048 +/- 0.0000  ] 

                         [   -0.5604 +/- 0.0000        0.4453 +/- 0.0000       -0.4790 +/- 0.0000  ] 

                         [    0.6733 +/- 0.0000       -0.8563 +/- 0.0000        1.2704 +/- 0.0000  ] 

                         [   -0.1704 +/- 0.0001        0.3088 +/- 0.0001        1.4026 +/- 0.0000  ] 

                         [    0.2732 +/- 0.0001        0.1647 +/- 0.0001       -2.1279 +/- 0.0000  ] 

                         [    0.0014 +/- 0.0001       -0.2190 +/- 0.0001        0.8556 +/- 0.0000  ] 

                         [   -0.0177 +/- 0.0001        0.1193 +/- 0.0001       -1.0786 +/- 0.0000  ] 

                         [    0.2523 +/- 0.0001       -0.2305 +/- 0.0001        1.5546 +/- 0.0000  ] 

                         [    0.3060 +/- 0.0001        0.6491 +/- 0.0001       -2.0792 +/- 0.0000  ] 

                         [    0.1844 +/- 0.0001       -0.4658 +/- 0.0001        0.6153 +/- 0.0000  ] 

                         [    0.8679 +/- 0.0000       -0.7302 +/- 0.0000       -1.3148 +/- 0.0000  ] 

 

Translation vectors (millimetres): 

                         [ -488.8933 +/- 0.0649      356.1638 +/- 0.0630     2259.2034 +/- 0.1014  ] 

                         [ -176.6366 +/- 0.0747      557.7898 +/- 0.0723     2582.4908 +/- 0.1272  ] 
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                         [ -106.3028 +/- 0.0908     -357.2386 +/- 0.0886     3163.5157 +/- 0.1110  ] 

                         [  -15.1019 +/- 0.0728      108.9893 +/- 0.0716     2558.0473 +/- 0.0844  ] 

                         [  215.9453 +/- 0.0577     -405.0651 +/- 0.0559     1986.9981 +/- 0.0878  ] 

                         [  -79.4812 +/- 0.0593     -225.1597 +/- 0.0580     2064.5996 +/- 0.0923  ] 

                         [   -6.1568 +/- 0.0807     -173.0286 +/- 0.0793     2816.0461 +/- 0.0917  ] 

                         [  205.5509 +/- 0.0568     -493.8714 +/- 0.0563     1970.9892 +/- 0.0947  ] 

                         [ -234.4591 +/- 0.0724     -126.0314 +/- 0.0706     2496.2956 +/- 0.1180  ] 

                         [ -337.9269 +/- 0.0774     -225.1057 +/- 0.0746     2698.0052 +/- 0.0965  ] 

                         [  -93.0807 +/- 0.0731      233.0472 +/- 0.0704     2522.2798 +/- 0.1159  ] 

                         [ -371.6224 +/- 0.0738      102.7704 +/- 0.0714     2575.8950 +/- 0.0925  ] 

                         [  362.8619 +/- 0.0654     -318.3349 +/- 0.0637     2293.4399 +/- 0.0854  ] 

                         [  203.4585 +/- 0.0574     -262.1489 +/- 0.0552     1988.4226 +/- 0.0847  ] 

                         [  413.4008 +/- 0.0730      -40.5516 +/- 0.0706     2546.0676 +/- 0.0844  ] 

                         [ -150.9664 +/- 0.0704     -165.1104 +/- 0.0688     2461.2057 +/- 0.0775  ] 

                         [ -411.2700 +/- 0.0683     -142.4915 +/- 0.0658     2333.6878 +/- 0.1081  ] 

                         [ -323.9650 +/- 0.0845       19.4339 +/- 0.0823     2943.5988 +/- 0.0990  ] 

                         [ -114.2614 +/- 0.0769      205.9993 +/- 0.0756     2700.8274 +/- 0.0941  ] 

                         [  390.8584 +/- 0.0464       12.7366 +/- 0.0452     1610.6573 +/- 0.0812  ] 

                         [ -230.5125 +/- 0.0483     -261.9150 +/- 0.0473     1667.2606 +/- 0.0826  ] 

                         [ -202.6438 +/- 0.0985      124.9858 +/- 0.0949     3404.5728 +/- 0.1171  ] 

                         [ -614.0406 +/- 0.0671       50.4090 +/- 0.0646     2301.8594 +/- 0.1043  ] 

                         [   77.5874 +/- 0.0894     -197.1773 +/- 0.0864     3096.0320 +/- 0.1066  ] 

                         [ -500.7292 +/- 0.0750     -252.0236 +/- 0.0723     2565.8401 +/- 0.1219  ] 

                         [ -314.8590 +/- 0.0530     -110.7994 +/- 0.0511     1827.2515 +/- 0.0796  ] 

                         [ -113.6923 +/- 0.0650      532.9572 +/- 0.0624     2259.3928 +/- 0.0935  ] 

                         [ -525.1949 +/- 0.0775       43.6418 +/- 0.0749     2694.4301 +/- 0.0919  ] 

                         [  472.7202 +/- 0.0481     -363.1211 +/- 0.0482     1681.6073 +/- 0.0804  ] 
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                         [  457.6801 +/- 0.0721     -607.4536 +/- 0.0701     2519.1301 +/- 0.0976  ] 

                         [ -211.0834 +/- 0.0587      482.2081 +/- 0.0561     2065.2462 +/- 0.0827  ] 

                         [   12.4805 +/- 0.0611     -498.5069 +/- 0.0594     2114.5059 +/- 0.0934  ] 

                         [ -640.6864 +/- 0.0708      227.3993 +/- 0.0692     2495.7829 +/- 0.1016  ] 

                         [  240.1102 +/- 0.0546     -285.4988 +/- 0.0539     1888.7218 +/- 0.0858  ] 

                         [  -61.9430 +/- 0.0902      461.4501 +/- 0.0875     3151.4026 +/- 0.1140  ] 

                         [   93.4313 +/- 0.0722     -676.7940 +/- 0.0714     2501.9871 +/- 0.1128  ] 

                         [ -147.6475 +/- 0.0579      242.4697 +/- 0.0556     1997.7613 +/- 0.0909  ] 

 

Camera 2 Intrinsics 

------------------- 

Focal length (pixels):   [ 2472.2141 +/- 0.0926     2472.1423 +/- 0.0897  ] 

Principal point (pixels):[ 1024.5042 +/- 0.0732     1024.3854 +/- 0.0689  ] 

Radial distortion:       [    0.0001 +/- 0.0004       -0.0029 +/- 0.0034  ] 

 

Position and Orientation of Camera 2 Relative to Camera 1 

--------------------------------------------------------- 

Rotation of camera 2:         [   -0.0001 +/- 0.0000       -0.0000 +/- 0.0000       -0.0000 +/- 0.0000  ] 

Translation of camera 2 (millimetres):[  -63.5032 +/- 0.0090       -0.0122 +/- 0.0089       -0.0401 +/- 
0.0625  ] 
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11 Appendix C 

Figures showing the different feature detection and extraction methods applied to the detection 
algorithm and their corresponding matches. 
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